Poly(Norbornene-Diphenothiazine) for Electrochemical Capture and Release of Chromium and Arsenic Oxyanions from Water

Chen Li , Dandong Wang , Zhengyang Zhang , Jae Uk Choi , Jun Huang , Ki-Taek Bang , Shaopeng Xu , Yanming Wang , Yoonseob Kim

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12865

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12865 DOI: 10.1002/eem2.12865
RESEARCH ARTICLE

Poly(Norbornene-Diphenothiazine) for Electrochemical Capture and Release of Chromium and Arsenic Oxyanions from Water

Author information +
History +
PDF

Abstract

Drinking water contamination by heavy metals, particularly chromium and arsenic oxyanions, is a severe challenge threatening humanity's sustainable development. Electrochemically mediated water purification is gaining attention due to its high uptake, rapid kinetics, modularity, and facile regeneration. Here, we designed a composite electrode by combining a redox-active/Faradaic polymer, poly(norbornene-diphenothiazine) (PNP2), with carbon nanotubes (CNTs) – PNP2-CNT. The PNP2-CNT demonstrated exceptional pseudocapacitance behavior, resulting in significantly accelerated adsorption rates for dichromate (Cr(VI); 0.008 g mg–1 min–1) and arsenite (As(III); 0.03 g mg–1 min–1), surpassing reported materials by a margin of 3–200 times, while demonstrating a high adsorption capacity, 666.3 and 612.4 mg g–1, respectively. Furthermore, it effectively converted As(III) to the less toxic arsenate (As(V)) during adsorption and Cr(VI) to the less toxic chromium (Cr(III)) during desorption. This PNP2-CNT system also showed significantly lower energy consumption, only 0.17% of the CNT control system. This study demonstrated for the first time the use of PNP2 redox-active polymers in the separation and conversion process, meeting the six criteria of high uptake, rapid kinetics, selectivity, stability, recyclability, and energy efficiency. This achievement expands the scope of advanced materials that address environmental concerns and make an impact by generating energy- and cost-effective water purification.

Keywords

adsorption / conversion / faradaic polymer / pseudocapacitance / redox-active polymer

Cite this article

Download citation ▾
Chen Li, Dandong Wang, Zhengyang Zhang, Jae Uk Choi, Jun Huang, Ki-Taek Bang, Shaopeng Xu, Yanming Wang, Yoonseob Kim. Poly(Norbornene-Diphenothiazine) for Electrochemical Capture and Release of Chromium and Arsenic Oxyanions from Water. Energy & Environmental Materials, 2025, 8(3): e12865 DOI:10.1002/eem2.12865

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. M. Nunes, G. Li, W.-Q. Chen, A. A. Meharg, P. O'Connor, Y.-G. Zhu, Environ. Sci. Technol. 2022, 56, 6415.

[2]

Y. Nakano, K. Takeshita, T. Tsutsumi, Water Res. 2001, 35, 496.

[3]

B. Zhang, J. Liu, Y. Sheng, J. Shi, H. Dong, Environ. Sci. Technol. 2021, 55, 6340.

[4]

K. Zuo, X. Huang, X. Liu, E. M. Gil Garcia, J. Kim, A. Jain, L. Chen, P. Liang, A. Zepeda, R. Verduzco, J. Lou, Q. Li, Environ. Sci. Technol. 2020, 54, 13322.

[5]

H. Lyu, J. Tang, Y. Huang, L. Gai, E. Y. Zeng, K. Liber, Y. Gong, Chem. Eng. J. 2017, 322, 516.

[6]

S. A. Ahmad, M. H. Khan, M. Haque, Risk Manag. Healthc. Policy 2018, 11, 251.

[7]

D. I. Fox, T. Pichler, D. H. Yeh, N. A. Alcantar, Environ. Sci. Technol. 2012, 46, 4553.

[8]

B. A. Manning, S. E. Fendorf, B. Bostick, D. L. Suarez, Environ. Sci. Technol. 2002, 36, 976.

[9]

S. Dixit, J. G. Hering, Environ. Sci. Technol. 2003, 37, 4182.

[10]

K. Kim, S. Cotty, J. Elbert, R. Chen, C.-H. Hou, X. Su, Adv. Mater. 2020, 32, 1906877.

[11]

P. L. Smedley, D. G. Kinniburgh, Appl. Geochem. 2002, 17, 517.

[12]

C. Santhosh, E. Daneshvar, P. Kollu, S. Peräniemi, A. N. Grace, A. Bhatnagar, Chem. Eng. J. 2017, 322, 472.

[13]

D. Zhang, X. Liu, D. Guo, G. Li, J. Qu, H. Dong, Environ. Sci. Technol. 2022, 56, 12315.

[14]

Y. Han, Z. Xu, C. Gao, Adv. Funct. Mater. 2013, 23, 3693.

[15]

H. Qiu, M. Xue, C. Shen, Z. Zhang, W. Guo, Adv. Mater. 2019, 31, 1803772.

[16]

S. Ahualli, G. R. Iglesias, M. M. Fernández, M. L. Jiménez, Á. V. Delgado, Environ. Sci. Technol. 2017, 51, 5326.

[17]

J. Lee, S. Kim, C. Kim, J. Yoon, Energy Environ. Sci. 2014, 7, 3683.

[18]

P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Nat. Rev. Mater. 2020, 5, 517.

[19]

T. Kim, C. A. Gorski, B. E. Logan, Environ. Sci. Technol. Lett. 2017, 4, 444.

[20]

G. Chen, Sep. Purif. Technol. 2004, 38, 11.

[21]

M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, V. Presser, Energy Environ. Sci. 2015, 8, 2296.

[22]

K.-J. Tan, X. Su, T. A. Hatton, Adv. Funct. Mater. 2020, 30, 1910363.

[23]

R. Chen, J. Feng, J. Jeon, T. Sheehan, C. Rüttiger, M. Gallei, D. Shukla, X. Su, Adv. Funct. Mater. 2021, 31, 2009307.

[24]

K. Kim, P. Baldaguez Medina, J. Elbert, E. Kayiwa, R. D. Cusick, Y. Men, X. Su, Adv. Funct. Mater. 2020, 30, 2004635.

[25]

A. Román Santiago, S. Yin, J. Elbert, J. Lee, D. Shukla, X. Su, J. Am. Chem. Soc. 2023, 145, 9508.

[26]

Y. Kim, Z. Lin, I. Jeon, T. Van Voorhis, T. M. Swager, J. Am. Chem. Soc. 2018, 140, 14413.

[27]

X. Su, H. J. Kulik, T. F. Jamison, T. A. Hatton, Adv. Funct. Mater. 2016, 26, 3552.

[28]

X. Su, A. Kushima, C. Halliday, J. Zhou, J. Li, T. A. Hatton, Nat. Commun. 2018, 9, 4701.

[29]

M. Kolek, F. Otteny, P. Schmidt, C. Mück-Lichtenfeld, C. Einholz, J. Becking, E. Schleicher, M. Winter, P. Bieker, B. Esser, Energy Environ. Sci. 2017, 10, 2334.

[30]

M. Kolek, F. Otteny, J. Becking, M. Winter, B. Esser, P. Bieker, Chem. Mater. 2018, 30, 6307.

[31]

C. Bodea, I. Silberg, in Advances in Heterocyclic Chemistry (Eds: A. R. Katritzky, A. J. Boulton), Academic Press, San Diego 1968, pp. 321–460.

[32]

T. Kawai, K. Oyaizu, H. Nishide, Macromolecules 2015, 48, 2429.

[33]

X. Mao, E. H. Yan, G. C. Rutledge, T. A. Hatton, Chem. Mater. 2016, 28, 543.

[34]

C. Li, D.-D. Wang, G. S. H. Poon Ho, Z. Zhang, J. Huang, K.-T. Bang, C. Y. Lau, S.-Y. Leu, Y. Wang, Y. Kim, J. Am. Chem. Soc. 2023, 145, 24603.

[35]

C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruna, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821.

[36]

Y. Zhang, P. Gao, X. Guo, H. Chen, R. Zhang, Y. Du, B. Wang, H. Yang, RSC Adv. 2020, 10, 16732.

[37]

C. E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, J. Hazard. Mater. 2012, 223, 1.

[38]

F. Fu, Q. Wang, J. Environ. Manag. 2011, 92, 407.

[39]

K. GracePavithra, V. Jaikumar, P. S. Kumar, P. SundarRajan, J. Clean. Prod. 2019, 228, 580.

[40]

J. R. Memon, S. Q. Memon, M. I. Bhanger, A. El-Turki, K. R. Hallam, G. C. Allen, Colloids Surf. B Biointerfaces 2009, 70, 232.

[41]

D. Mohan, C. U. Pittman, J. Hazard. Mater. 2007,

[42]

P. Rajasulochana, V. Preethy, Resour. Efficient Technol. 2016, 2, 175.

[43]

C. D. Venzke, A. Giacobbo, J. Z. Ferreira, A. M. Bernardes, M. A. S. Rodrigues, Process Saf. Environ. Prot. 2018, 117, 152.

[44]

J.-P. Simonin, Chem. Eng. J. 2016, 300, 254.

[45]

X. Guo, J. Wang, J. Mol. Liq. 2019, 296, 111850.

[46]

C. Luo, Z. Tian, B. Yang, L. Zhang, S. Yan, Chem. Eng. J. 2013, 234, 256.

[47]

R. Nithya, T. Gomathi, P. N. Sudha, J. Venkatesan, S. Anil, S.-K. Kim, Int. J. Biol. Macromol. 2016, 87, 545.

[48]

C. Liu, R.-N. Jin, X.-K. Ouyang, Y.-G. Wang, Appl. Surf. Sci. 2017, 408, 77.

[49]

N. Sankararamakrishnan, M. Jaiswal, N. Verma, Chem. Eng. J. 2014,

[50]

L. Li, Y. Xu, D. Zhong, Chem. Eur. J. 2020, 124, 2854.

[51]

S. Yang, Q. Li, L. Chen, Z. Chen, Z. Pu, H. Wang, S. Yu, B. Hu, J. Chen, X. Wang, J. Hazard. Mater. 2019, 379, 120797.

[52]

S. Sahu, U. K. Sahu, R. K. Patel, J. Chem. Eng. Data 2019, 64, 1294.

[53]

J. Wang, W. Xu, L. Chen, X. Huang, J. Liu, Chem. Eng. J. 2014, 251, 25.

[54]

S. Venkateswarlu, D. Lee, M. Yoon, ACS Appl. Mater. Interfaces 2016, 8, 23876.

[55]

J. Yang, H. Zhang, M. Yu, I. Emmanuelawati, J. Zou, Z. Yuan, C. Yu, Adv. Funct. Mater. 2014, 24, 1354.

[56]

Z. Wu, W. Li, P. A. Webley, D. Zhao, Adv. Mater. 2012, 24, 485.

[57]

W. Tang, Q. Li, S. Gao, J. K. Shang, J. Hazard. Mater. 2011, 192, 131.

[58]

Y. K. Penke, G. Anantharaman, J. Ramkumar, K. K. Kar, ACS Appl. Mater. Interfaces 2017, 9, 11587.

[59]

M. Jian, H. Wang, R. Liu, J. Qu, H. Wang, X. Zhang, Environ. Sci. Nano 2016, 3, 1186.

[60]

F. Blank, C. Janiak, Coord. Chem. Rev. 2009, 253, 827.

[61]

C. M. Stern, T. O. Jegede, V. A. Hulse, N. Elgrishi, Chem. Soc. Rev. 2021, 50, 1642.

[62]

Z. Song, S. Garg, J. Ma, T. D. Waite, Environ. Sci. Technol. 2019, 53, 9715.

[63]

S. Dadashi-Silab, X. Pan, K. Matyjaszewski, Chemistry 2017, 23, 5972.

[64]

J. Zhou, L. Mao, M.-X. Wu, Z. Peng, Y. Yang, M. Zhou, X.-L. Zhao, X. Shi, H.-B. Yang, Chem. Sci. 2022, 13, 5252.

[65]

J. Han, C. A. Haines, J. J. Piane, L. L. Filien, E. D. Nacsa, J. Am. Chem. Soc. 2023, 145, 15680.

[66]

X. Su, K.-J. Tan, J. Elbert, C. Rüttiger, M. Gallei, T. F. Jamison, T. A. Hatton, Energy Environ. Sci. 2017, 10, 1272.

[67]

World Health Organization, Guidelines for Drinking-Water Quality: First Addendum to the Fourth Edition, World Health Organization, Geneva 2017.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/