Enhancing Alkaline Hydrogen Evolution Reaction on Ru-Decorated TiO2 Nanotube Layers: Synergistic Role of Ti3+, Ru Single Atoms, and Ru Nanoparticles

Sitaramanjaneya Mouli Thalluri , Jhonatan Rodriguez-Pereira , Jan Michalicka , Eva Kolíbalová , Ludek Hromadko , Stanislav Slang , Miloslav Pouzar , Hanna Sopha , Raul Zazpe , Jan M. Macak

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12864

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12864 DOI: 10.1002/eem2.12864
RESEARCH ARTICLE

Enhancing Alkaline Hydrogen Evolution Reaction on Ru-Decorated TiO2 Nanotube Layers: Synergistic Role of Ti3+, Ru Single Atoms, and Ru Nanoparticles

Author information +
History +
PDF

Abstract

Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers (TNT) and ruthenium (Ru) species comprising of both single atoms (SAs) and nanoparticles (NPs) augment the alkaline hydrogen evolution reaction (HER) by enhancing Volmer kinetics from rapid water dissociation and improving Tafel kinetics from efficient H* desorption. Atomic layer deposition of Ru with 50 process cycles results in a mixture of Ru SAs and 2.8 ± 0.4 nm NPs present on TNT layers, and it emerges with the highest HER activity among all the electrodes synthesized. A detailed study of the Ti and Ru species using different high-resolution techniques confirmed the presence of Ti3+ states and the coexistence of Ru SAs and NPs. With insights from literature, the role of Ti3+, appropriate work functions of TNT layers and Ru, and the synergistic effect of Ru SAs and Ru NPs in improving the performance of alkaline HER were elaborated and justified. The aforementioned characteristics led to a remarkable performance by having 9 mV onset potentials and 33 mV dec–1 of Tafel slopes and a higher turnover frequency of 1.72 H2 s–1 at 30 mV. Besides, a notable stability from 28 h staircase chronopotentiometric measurements for TNT@Ru surpasses TNT@Pt in comparison.

Keywords

alkaline hydrogen evolution reaction / ruthenium nanoparticles / ruthenium single atoms / TiO2 nanotube layers / water dissociation

Cite this article

Download citation ▾
Sitaramanjaneya Mouli Thalluri, Jhonatan Rodriguez-Pereira, Jan Michalicka, Eva Kolíbalová, Ludek Hromadko, Stanislav Slang, Miloslav Pouzar, Hanna Sopha, Raul Zazpe, Jan M. Macak. Enhancing Alkaline Hydrogen Evolution Reaction on Ru-Decorated TiO2 Nanotube Layers: Synergistic Role of Ti3+, Ru Single Atoms, and Ru Nanoparticles. Energy & Environmental Materials, 2025, 8(3): e12864 DOI:10.1002/eem2.12864

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Schalenbach, G. Tjarks, M. Carmo, W. Lueke, M. Mueller, D. Stolten, J. Electrochem. Soc. 2016, 163, F3197.

[2]

J. N. Hansen, H. Prats, K. K. Toudahl, N. Mørch Secher, K. Chan, J. Kibsgaard, I. Chorkendorff, ACS Energy Lett. 2021, 6, 1175.

[3]

C. H. Chen, D. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K. Dong, S. Z. Qiao, H. Liu, X. W. Du, Adv. Energy Mater. 2019, 9, 1803913.

[4]

J. N. Tiwari, K. Kumar, M. Safarkhani, M. Umer, A. T. E. Vilian, A. Beloqui, G. Bhaskaran, Y. S. Huh, Y. K. Han, Adv. Sci. 2024, 11, 2403197.

[5]

Y. Xun, H. Jin, Y. Li, S. Zhou, K. Zhang, X. Xu, W. Jonhson, S. Chang, T. L. Tan, J. Ding, Energy Environ. Mater. 2024, 7, e12714.

[6]

J. Creus, J. De Tovar, N. Romero, J. García-Antón, K. Philippot, R. Bofill, X. Sala, Ruthenium Nanoparticles for Catalytic Water Splitting, Vol. 12, Wiley-VCH Verlag, Weinheim, Germany 2019, pp. 2493–514.

[7]

M. Luo, J. Cai, J. Zou, Z. Jiang, G. Wang, X. Kang, J. Mater. Chem. A Mater. 2021, 9, 14941.

[8]

Z. L. Wang, K. Sun, J. Henzie, X. Hao, C. Li, T. Takei, Y. M. Kang, Y. Yamauchi, Angew. Chem. Int. Ed. 2018, 57, 5848.

[9]

S. M. Thalluri, J. Rodriguez-Pereira, R. Zazpe, B. Bawab, E. Kolíbalová, L. Jelinek, J. M. Macak, Small 2023, 19, 2300974.

[10]

J. Mao, C. T. He, J. Pei, W. Chen, D. He, Y. He, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 4958.

[11]

J. Xu, T. Liu, J. Li, B. Li, Y. Liu, B. Zhang, D. Xiong, I. Amorim, W. Li, L. Liu, Energy Environ. Sci. 1819, 2018, 11.

[12]

J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, J. B. Baek, Nat. Nanotechnol. 2017, 12, 441.

[13]

J. Dai, Y. Zhu, H. A. Tahini, Q. Lin, Y. Chen, D. Guan, C. Zhou, Z. Hu, H. J. Lin, T. S. Chan, C. Te Chen, S. C. Smith, H. Wang, W. Zhou, Z. Shao, Nat. Commun. 2020, 11, 5657.

[14]

H. Kim, Y. Wang, N. Denisov, Z. Wu, Š. Kment, P. Schmuki, J. Mater. Sci. 2022, 57, 12960.

[15]

S. Yoo, S. A. Akbar, K. H. Sandhage, Adv. Mater. 2004, 16, 260.

[16]

C. Liu, J. Qian, Y. Ye, H. Zhou, C. J. Sun, C. Sheehan, Z. Zhang, G. Wan, Y. S. Liu, J. Guo, S. Li, H. Shin, S. Hwang, T. B. Gunnoe, W. A. Goddard, S. Zhang, Nat. Catal. 2020, 4, 36.

[17]

E. Scolan, C. Sanchez, Chem. Mater. 1998, 10, 3217.

[18]

B. Bawab, S. M. Thalluri, J. Rodriguez-Pereira, H. Sopha, R. Zazpe, J. M. Macak, Electrochim. Acta 2022, 429, 141044.

[19]

L. N. Chen, S. H. Wang, P. Y. Zhang, Z. X. Chen, X. Lin, H. J. Yang, T. Sheng, W. F. Lin, N. Tian, S. G. Sun, Z. Y. Zhou, Nano Energy 2021, 88, 106211.

[20]

A. Fujishima, X. Zhang, D. A. Tryk, Surf. Sci. Rep. 2008, 63, 515.

[21]

C. Sun, T. Liao, G. Q. Lu, S. C. Smith, J. Phys. Chem. C 2012, 116, 2477.

[22]

J. Li, J. Hu, M. Zhang, W. Gou, S. Zhang, Z. Chen, Y. Qu, Y. Ma, Nat. Commun. 2021, 12, 3502.

[23]

A. Borodin, M. Reichling, Phys. Chem. Chem. Phys. 2011, 13, 15442.

[24]

K. J. Park, J. M. Doub, T. Gougousi, G. N. Parsons, Appl. Phys. Lett. 2005,

[25]

C. Hu, E. Song, M. Wang, W. Chen, F. Huang, Z. Feng, J. Liu, J. Wang, Adv. Sci. 2021, 8, 2001881.

[26]

X. Guan, Q. Wu, H. Li, S. Zeng, Q. Yao, R. Li, H. Chen, Y. Zheng, K. Qu, Appl Catal B 2023, 323, 122145.

[27]

P. Liu, Z. Huang, X. Gao, X. Hong, J. Zhu, G. Wang, Y. Wu, J. Zeng, X. Zheng, Adv. Mater. 2022, 34, 2200057.

[28]

L. Kuai, Z. Chen, S. Liu, E. Kan, N. Yu, Y. Ren, C. Fang, X. Li, Y. Li, B. Geng, Nat. Commun. 2020, 11, 48.

[29]

S. Wang, M. Wang, Z. Liu, S. Liu, Y. Chen, M. Li, H. Zhang, Q. Wu, J. Guo, X. Feng, Z. Chen, Y. Pan, ACS Appl. Mater. Interfaces 2022, 14, 15250.

[30]

J. N. Tiwari, S. Sultan, C. W. Myung, T. Yoon, N. Li, M. Ha, A. M. Harzandi, H. J. Park, D. Y. Kim, S. S. Chandrasekaran, W. G. Lee, V. Vij, H. Kang, T. J. Shin, H. S. Shin, G. Lee, Z. Lee, K. S. Kim, Nat. Energy 2018, 3, 773.

[31]

Q. Hu, G. Li, X. Huang, Z. Wang, H. Yang, Q. Zhang, J. Liu, C. He, J. Mater. Chem. A Mater. 2019, 7, 19531.

[32]

L. Zhang, J. Zhu, X. Li, S. Mu, F. Verpoort, J. Xue, Z. Kou, J. Wang, Interdiscip. Mater. 2022, 1, 51.

[33]

B. Bawab, S. M. Thalluri, E. Kolíbalová, R. Zazpe, L. Jelinek, J. Rodriguez-Pereira, J. M. Macak, Chem. Eng. J. 2024, 482, 148959.

[34]

B. Lu, L. Guo, F. Wu, Y. Peng, J. E. Lu, T. J. Smart, N. Wang, Y. Z. Finfrock, D. Morris, P. Zhang, N. Li, P. Gao, Y. Ping, S. Chen, Nat. Commun. 2019, 10, 631.

[35]

J. Wang, Z. Wei, S. Mao, H. Li, Y. Wang, Energy Environ. Sci. 2018, 11, 800.

[36]

Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2016, 138, 16174.

[37]

R. Zazpe, H. Sopha, J. Prikryl, M. Krbal, J. Mistrik, F. Dvorak, L. Hromadko, J. M. Macak, Nanoscale 2018, 10, 16601.

[38]

H. Sopha, M. Krbal, S. Ng, J. Prikryl, R. Zazpe, F. K. Yam, J. M. Macak, Appl. Mater. Today 2017, 9, 104.

[39]

S. Ng, P. Kuberský, M. Krbal, J. Prikryl, V. Gärtnerová, D. Moravcová, H. Sopha, R. Zazpe, F. K. Yam, A. Jäger, L. Hromádko, L. Beneš, A. Hamáček, J. M. Macak, Adv. Eng. Mater. 2018, 20, 1700589.

[40]

J. Liu, R. Mullins, H. Lu, D. W. Zhang, M. Nolan, J. Phys. Chem. C 2023, 127, 13651.

[41]

A. Rothman, A. Werbrouck, S. F. Bent, Chem. Mater. 2024, 36, 541.

[42]

H. Sopha, I. Mirza, H. Turčičova, D. Pavlinak, J. Michalicka, M. Krbal, J. Rodriguez-Pereira, L. Hromadko, O. Novák, J. Mužík, M. Smrž, E. Kolibalova, N. Goodfriend, N. M. Bulgakova, T. Mocek, J. M. Macak, RSC Adv. 2020, 10, 22137.

[43]

H. Sopha, J. Bacova, K. Baishya, M. Sepúlveda, J. Rodriguez-Pereira, J. Capek, L. Hromadko, R. Zazpe, S. M. Thalluri, J. Mistrik, P. Knotek, T. Rousar, J. M. Macak, Surf. Coat. Technol. 2023, 462, 129504.

[44]

L. J. Hoyos, D. F. Rivera, A. F. Gualdrón-Reyes, R. Ospina, J. Rodríguez-Pereira, J. L. Ropero-Vega, M. E. Niño-Gómez, Appl. Surf. Sci. 2017, 423, 917.

[45]

J. Rodriguez-Pereira, S. A. Rincón-Ortiz, J. H. Quintero-Orozco, A. C. García-Castro, R. Ospina, Sur. Sci. Spectra 2019, 26, 024012.

[46]

C. Mun, J. J. Ehrhardt, J. Lambert, C. Madic, Appl. Surf. Sci. 2007, 253, 7613.

[47]

D. Rochefort, P. Dabo, D. Guay, P. M. A. Sherwood, Electrochim. Acta 2003, 48, 4245.

[48]

K. S. Kim, N. Winograd, J. Catal. 1974, 35, 66.

[49]

J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Perkin-Elmer Corporation Physical Electronics Division, Eden Prairie, MN 1992.

[50]

P. G. Rouxhet, M. J. Genet, Surf. Interface Anal. 2011, 43, 1453.

[51]

Y. Li, T. Qin, Y. Wei, J. Xiong, P. Zhang, K. Lai, H. Chi, X. Liu, L. Chen, X. Yu, Z. Zhao, L. Li, J. Liu, Nat. Commun. 2023, 14, 7149.

[52]

C. Zhang, Y. Huang, Y. Yu, J. Zhang, S. Zhuo, B. Zhang, Chem. Sci. 2017, 8, 2769.

[53]

L. Guo, J. Tan, W. Li, G. Hu, S. Zhang, Underpotential Deposition, Vol. 25, Springer International Publishing, Cham 2013, pp. 1842–57.

[54]

W. Zhai, Y. Ma, D. Chen, J. C. Ho, Z. Dai, Y. Qu, InfoMat 2022, 4, e12357.

[55]

S. Das, H. Sopha, M. Krbal, R. Zazpe, V. Podzemna, J. Prikryl, J. M. Macak, ChemElectroChem 2017, 4, 495.

[56]

V. C. Anitha, R. Zazpe, M. Krbal, J. E. Yoo, H. Sopha, J. Prikryl, G. Cha, S. Slang, P. Schmuki, J. M. Macak, J. Catal. 2018, 365, 86.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/