A Sustainable Direct Recycling Method for LMO/NMC Cathode Mixture from Retired Lithium-Ion Batteries in EV

Yu Wang , Kang Shen , Chris Yuan

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12863

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12863 DOI: 10.1002/eem2.12863
RESEARCH ARTICLE

A Sustainable Direct Recycling Method for LMO/NMC Cathode Mixture from Retired Lithium-Ion Batteries in EV

Author information +
History +
PDF

Abstract

Direct recycling methods offer a non-destructive way to regenerate degraded cathode material. The materials to be recycled in the industry typically constitute a mixture of various cathode materials extracted from a wide variety of retired lithium-ion batteries. Bridging the gap, a direct recycling method using a low-temperature sintering process is reported. The degraded cathode mixture of LMO (LiMn2O4) and NMC (LiNiCoMnO2) extracted from retired LIBs was successfully regenerated by the proposed method with a low sintering temperature of 300°C for 4 h. Advanced characterization tools were utilized to validate the full recovery of the crystal structure in the degraded cathode mixture. After regeneration, LMO/NMC cathode mixture shows an initial capacity of 144.0 mAh g–1 and a capacity retention of 95.1% at 0.5 C for 250 cycles. The regenerated cathode mixture also shows a capacity of 83 mAh g–1 at 2 C, which is slightly higher compared to the pristine material. As a result of the direct recycling process, the electrochemical performance of degraded cathode mixture is recovered to the same level as the pristine material. Life-cycle assessment results emphasized a 90.4% reduction in energy consumption and a 51% reduction in PM2.5 emissions for lithium-ion battery packs using a direct recycled cathode mixture compared to the pristine material.

Keywords

direct recycling / life-cycle assessment / lithium-ion battery / spent cathode mixture

Cite this article

Download citation ▾
Yu Wang, Kang Shen, Chris Yuan. A Sustainable Direct Recycling Method for LMO/NMC Cathode Mixture from Retired Lithium-Ion Batteries in EV. Energy & Environmental Materials, 2025, 8(4): e12863 DOI:10.1002/eem2.12863

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan, M. Chi, A. Manthiram, Adv. Energy Mater. 2018, 8, 1703154.

[2]

Z. Tong, M. Wang, Z. Bai, H. Li, N. Wang, ChemPhysMater 2024,

[3]

B. Makuza, Q. Tian, X. Guo, K. Chattopadhyay, D. Yu, J. Power Sources 2021, 491, 229622.

[4]

A. Chagnes, B. Pospiech, J. Chem. Technol. Biotechnol. 2013, 88, 1191.

[5]

C. Wu, M. Xu, C. Zhang, L. Ye, K. Zhang, H. Cong, L. Zhuang, X. Ai, H. Yang, J. Qian, Energy Storage Mater. 2023, 55, 154.

[6]

H. Gao, Q. Yan, P. Xu, H. Liu, M. Li, P. Liu, J. Luo, Z. Chen, ACS Appl. Mater. Interfaces 2020, 12, 51546.

[7]

X. Meng, J. Hao, H. Cao, X. Lin, P. Ning, X. Zheng, J. Chang, X. Zhang, B. Wang, Z. Sun, Waste Manag. 2019, 84, 54.

[8]

X. Yu, S. Yu, Z. Yang, H. Gao, P. Xu, G. Cai, S. Rose, C. Brooks, P. Liu, Z. Chen, Energy Storage Mater. 2022, 51, 54.

[9]

L. Wuschke, H. G. Jäckel, T. Leißner, U. A. Peuker, Waste Manag. 2019, 85, 317.

[10]

L. Brückner, J. Frank, T. Elwert, Metals 2020, 10, 1107.

[11]

S. B. Chikkannanavar, J. H. Kim, W. Jung, in Transition Metal Oxides for Electrochemical Energy Storage (Eds: V. Augustyn, J. Nanda), Wiley, Hoboken, NJ 2022, pp. 257–72.

[12]

L. Britala, M. Marinaro, G. Kucinskis, J. Energy Storage 2023, 73, 108875.

[13]

A. H. Marincaş, F. Goga, S. A. Dorneanu, P. Ilea, J. Solid State Electrochem. 2020, 24, 473.

[14]

P. N. Suryadi, J. Karunawan, O. Floweri, F. Iskandar, J. Energy Storage 2023, 68, 107634.

[15]

Y. Chen, S. Song, X. Zhang, Y. Liu, J. Phys. Conf. Ser. 2019, 1347, 012012.

[16]

F. P. McGrogan, S. N. Raja, Y. M. Chiang, K. J. Van Vliet, J. Electrochem. Soc. 2018, 165, A2458.

[17]

K. Mao, Y. Yao, Y. Chen, W. Li, X. Shen, J. Song, H. Chen, W. Luan, K. Wu, J. Energy Storage 2024, 84, 110807.

[18]

S. K. Jung, H. Gwon, J. Hong, K. Y. Park, D. H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Adv. Energy Mater. 2014, 4, 1300787.

[19]

T. Wang, H. Luo, Y. Bai, I. Belharouak, K. Jayanthi, M. P. Paranthaman, B. T. Manard, E. T.-H. Wang, F. Dogan, S.-B. Son, B. J. Ingram, Q. Dai, S. Dai, J. Power Sources 2024, 593, 233798.

[20]

W. M. Dose, S. Kim, Q. Liu, S. E. Trask, A. R. Dunlop, Y. Ren, Z. Zhang, T. T. Fister, C. S. Johnson, J. Mater. Chem. A 2021, 9, 12818.

[21]

V. A. Godbole, J. F. Colin, P. Novák, J. Electrochem. Soc. 2011, 158, A1005.

[22]

S. Y. Luchkin, M. A. Kirsanova, D. A. Aksyonov, S. A. Lipovskikh, V. A. Nikitina, A. M. Abakumov, K. J. Stevenson, ACS Appl. Energy Mater. 2022, 5, 7758.

[23]

W. Zhao, L. Zou, H. Jia, J. Zheng, D. Wang, J. Song, C. Hong, R. Liu, W. Xu, Y. Yang, J. Xiao, C. Wang, J. G. Zhang, ACS Appl. Energy Mater. 2020, 3, 3369.

[24]

Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff, P. Behrends, S. Nowak, M. Winter, F. M. Schappacher, J. Power Sources 2016, 329, 31.

[25]

A. Soloy, D. Flahaut, J. Allouche, D. Foix, G. Salvato Vallverdu, E. Suard, E. Dumont, L. Gal, F. Weill, L. Croguennec, ACS Appl. Energy Mater. 2022, 5, 5617.

[26]

A. C. Wagner, N. Bohn, H. Geßwein, M. Neumann, M. Osenberg, A. Hilger, I. Manke, V. Schmidt, J. R. Binder, ACS Appl. Energy Mater. 2020, 3, 12565.

[27]

A. S. Wijareni, H. Widiyandari, A. Purwanto, A. F. Arif, M. Z. Mubarok, Energies 2022, 15, 5794.

[28]

J. B. Dunn, L. Gaines, J. Sullivan, M. Q. Wang, Environ. Sci. Technol. 2012, 46, 12704.

[29]

S. Ahmed, P. A. Nelson, K. G. Gallagher, N. Susarla, D. W. Dees, J. Power Sources 2017, 342, 733.

[30]

X. Wu, Y. Liu, J. Wang, Y. Tan, Z. Liang, G. Zhou, Adv. Mater. 2024, 36, 2403818.

[31]

K. Shen, C. Yuan, M. Hauschild, CIRP Ann. 2023, 72, 13.

[32]

J. Diekmann, S. Sander, G. Sellin, M. Petermann, A. Kwade, in Recycling of Lithium-Ion Batteries: The LithoRec Way (Eds: A. Kwade, J. Diekmann), Springer, Cham, Switzerland 2018, pp. 127–38.

[33]

A. Vanderbruggen, J. Sygusch, M. Rudolph, R. Serna-Guerrero, Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127111.

[34]

D. N. Shibaeva, A. A. E. Kompanchenko, S. V. E. Tereschenko, Fortschr. Mineral. 2021, 11, 797.

[35]

M. Ahuis, A. Aluzoun, M. Keppeler, S. Melzig, A. Kwade, J. Power Sources 2024, 593, 233995.

[36]

M. Bhar, S. Ghosh, S. Krishnamurthy, Y. Kaliprasad, S. K. Martha, RSC Sustain. 2023, 1, 1150.

[37]

Z. Meng, D. Yang, Y. Yan, J. Therm. Anal. Calorim. 2014, 118, 551.

[38]

J. Yang, W. Wang, H. Yang, D. Wang, Green Chem. 2020, 22, 6489.

[39]

H. Yang, B. Deng, X. Jing, W. Li, D. Wang, Waste Manag. 2021, 129, 85.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/