Facet-Dependent Performance of Microstructured SrTiO3 Particles in Photocatalytic Oxidation of Acetone

Nathália Tavares Costa , Daniel Monteiro Cunha , Kaijian Zhu , Annemarie Huijser , Georgios Katsoukis , Kasper Wenderich , Jitte Flapper , Guido Mul

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12862

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12862 DOI: 10.1002/eem2.12862
RESEARCH ARTICLE

Facet-Dependent Performance of Microstructured SrTiO3 Particles in Photocatalytic Oxidation of Acetone

Author information +
History +
PDF

Abstract

Photocatalysis is a promising technology for purification of indoor air by oxidation of volatile organic compounds. This study provides a comprehensive analysis of the adsorption and photo-oxidation of surface-adsorbed acetone on three SrTiO3 morphologies: cubes (for which exclusively {100} facets are exposed), {110}-truncated cubes, and {100}-truncated rhombic dodecahedrons, respectively, all prepared by hydrothermal synthesis. In situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy shows that cubic crystals contain a high quantity of surface –OH groups, enabling significant quantities of adsorbed acetone in the form of η1-enolate when exposed to gas phase acetone. Contrary, {110} facets exhibit fewer surface –OH groups, resulting in relatively small quantities of adsorbed η1-acetone, without observable quantities of enolate. Interestingly, acetate and formate signatures appear in the spectra of cubic, surface η1-enolate containing, SrTiO3 upon illumination, while besides acetate and formate, the formation of (surface) formaldehyde was observed on truncated cubes, and dodecahedrons, by conversion of adsorbed η1-acetone. Time-Resolved Photoluminescence studies demonstrate that the lifetimes of photogenerated charge carriers vary with crystal morphology. The shortest carrier lifetime (τ1 = 33 ± 0.1 ps) was observed in {110}-truncated cube SrTiO3, likely due to a relatively strong built-in electric field promoting electron transport to {100} facets and hole transport to {110} facets. The second lifetime (τ2 = 259 ± 1 ps) was also the shortest for this morphology, possibly due to a higher amount of surface trap states. Our results demonstrate that SrTiO3 crystal morphology can be tuned to optimize performance in photocatalytic oxidation.

Keywords

faceted SrTiO3 / in situ DRIFTS / photocatalysis / TRPL / VOC oxidation

Cite this article

Download citation ▾
Nathália Tavares Costa, Daniel Monteiro Cunha, Kaijian Zhu, Annemarie Huijser, Georgios Katsoukis, Kasper Wenderich, Jitte Flapper, Guido Mul. Facet-Dependent Performance of Microstructured SrTiO3 Particles in Photocatalytic Oxidation of Acetone. Energy & Environmental Materials, 2025, 8(3): e12862 DOI:10.1002/eem2.12862

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Awada, B. Becerik-Gerber, S. Hoque, Z. O'Neill, G. Pedrielli, J. Wen, T. Wu, Build. Environ. 2021, 188, 107480.

[2]

Y. Huang, S. S. H. Ho, R. Niu, L. Xu, Y. Lu, J. Cao, S. Lee, Molecules 2016, 21, 56.

[3]

K. W. Shah, W. Li, Nanomaterials 2019, 9, 910.

[4]

J. Mo, Y. Zhang, Q. Xu, J. J. Lamson, R. Zhao, Atmos. Environ. 2009, 43, 2229.

[5]

S. Wang, H. M. Ang, M. O. Tade, Environ. Int. 2007, 33, 694.

[6]

R. de Richter, S. Caillol, J. Photochem. Photobiol. C Photochem. Rev. 2011, 12(1), 1.

[7]

M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.

[8]

Y. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302.

[9]

R. Medhi, M. D. Marquez, T. R. Lee, ACS Appl. Nanomater. 2020, 3, 6156.

[10]

P. Kanhere, Z. Chen, Molecules 2014, 19, 19995.

[11]

W. Wang, M. O. Tadé, Z. Shao, Chem. Soc. Rev. 2015, 44, 5371.

[12]

P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D. P. Dubal, K. H. Kim, A. Deep, Nano Energy 2021, 80, 105552.

[13]

S. Patial, V. Hasija, P. Raizada, P. Singh, A. A. P. Khan Singh, A. M. Asiri, J. Environ. Chem. Eng. 2020, 8, 103791.

[14]

E. Grabowska, Appl. Catal. B 2016, 186, 97.

[15]

A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.

[16]

T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 2020, 581, 411.

[17]

S. Su, I. Siretanu, D. van den Ende, B. Mei, G. Mul, F. Mugele, Adv. Mater. 2021, 33, 2106229.

[18]

S. C. Chan, Y. L. Cheng, B. K. Chang, C. W. Hong, RSC Adv. 2021, 11, 18500.

[19]

L. Dong, H. Shi, K. Cheng, Q. Wang, W. Weng, W. Han, S.-V. Berlin, Nano Res. 2014, 7, 1311.

[20]

K. Huang, L. Yuan, S. Feng, Inorg. Chem. Front. 2015, 2, 965.

[21]

P. L. Hsieh, G. Naresh, Y. S. Huang, C. W. Tsao, Y. J. Hsu, L. J. Chen, M. H. Huang, J. Phys. Chem. C 2019, 123, 13664.

[22]

S. A. Hassanzadeh-Tabrizi, J. Alloys Compd. 2023, 968, 171914.

[23]

H. Gleiter, Acta Mater. 2000, 48(1), 1.

[24]

M. A. Henderson, J. Phys. Chem. B 2005, 109, 12062.

[25]

J. Szanyi, J. H. Kwak, J. Mol. Catal. A Chem. 2015, 406, 213.

[26]

J. M. Coronado, S. Kataoka, I. Tejedor-Tejedor, M. A. Anderson, J. Catal. 2003, 219, 219.

[27]

A. Chattopadhyay, P. Chatterjee, T. Chakraborty, J. Phys. Chem. A 2015, 119, 8146.

[28]

A. Mattsson, L. Österlund, J. Phys. Chem. C 2010, 114, 14121.

[29]

N. N. Trukhan, A. A. Panchenko, E. Roduner, M. S. Mel'gunov, O. A. Kholdeeva, J. Mrowiec-Białoń, A. B. Jarzȩbski, Langmuir 2005, 21, 10545.

[30]

W. Lin, H. Frei, J. Am. Chem. Soc. 2002, 124, 9292.

[31]

S. Kwon, T. C. Lin, E. Iglesia, J. Catal. 2020, 383, 60.

[32]

H. Alalwan, A. Alminshid, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117990.

[33]

D. M. Griffiths, C. H. Rochester, J. Chem. Soc. Faraday Trans. 1 1978, 74, 403.

[34]

T. Würger, W. Heckel, K. Sellschopp, S. Müller, A. Stierle, Y. Wang, H. Noei, G. Feldbauer, J. Phys. Chem. C 2018, 122, 19481.

[35]

C. R. Ayre, R. J. Madix, C. R. Ayre, R. J. Madix, J. Am. Chem. Soc. 1995, 117, 2301.

[36]

M. A. Henderson, J. Phys. Chem. B 2004, 108, 18932.

[37]

E. L. Jeffery, R. K. Mann, G. J. Hutchings, S. H. Taylor, D. J. Willock, Catal. Today 2005, 105, 85.

[38]

Y. Li, X. Wu, Y. Duan, Z. Huang, J. Fan, S. A. C. Carabineiro, K. Lv, Appl. Surf. Sci. 2022, 594, 153519.

[39]

T. Shi, Y. Duan, K. Lv, Z. Hu, Q. Li, M. Li, X. Li, Front. Chem. 2018, 6, 383512.

[40]

C. Arrouvel, M. Digne, M. Breysse, H. Toulhoat, P. Raybaud, J. Catal. 2004, 222, 152.

[41]

S. Dzwigaj, C. Arrouvel, M. Breysse, C. Geantet, S. Inoue, H. Toulhoat, P. Raybaud, J. Catal. 2005, 236, 245.

[42]

R. Bérard, C. Sassoye, H. Terrisse, P. Bertoncini, B. Humbert, S. Cassaignon, S. Le Caër, Langmuir 2024, 40, 16258.

[43]

F. Gellé, R. Chirita, D. Mertz, M. V. Rastei, A. Dinia, S. Colis, Surf. Sci. 2018, 677, 39.

[44]

S. P. Chen, J. Mater. Res. 1998, 13, 1848.

[45]

R. Mueller, H. K. Kammler, K. Wegner, S. E. Pratsinis, Langmuir 2003, 19, 160.

[46]

C. Y. Wu, K. J. Tu, J. P. Deng, Y. S. Lo, C. H. Wu, Materials 2017, 10, 566.

[47]

F. P. Rotzinger, J. M. Kesselman-Truttmann, S. J. Hug, V. Shklover, M. Grätzel, J. Phys. Chem. B 2004, 108, 5004.

[48]

Y. Wang, B. Wen, A. Dahal, G. A. Kimmel, R. Rousseau, A. Selloni, N. G. Petrik, Z. Dohnálek, J. Phys. Chem. C 2020, 124, 20228.

[49]

A. Mattsson, M. Leideborg, L. Persson, G. Westin, L. Österlund, J. Phys. Chem. C 2009, 113, 3810.

[50]

A. Mattsson, M. Leideborg, K. Larsson, G. Westing, L. Österlund, J. Phys. Chem. B 2006, 110, 1210.

[51]

S. Sun, J. Ding, J. Bao, C. Gao, Z. Qi, C. Li, Catal. Lett. 2010, 137, 239.

[52]

T. Kecskés, J. Raskó, J. Kiss, Appl. Catal. A. Gen. 2004, 273, 55.

[53]

J. Raskó, T. Kecskés, J. Kiss, J. Catal. 2004, 226, 183.

[54]

G. Busca, J. Lamotte, J. Ciaude Lavalley, V. Lorenzelli, J. Am. Chem. Soc. 1987, 109, 5197.

[55]

C. N. Rusu, J. T. Yates, J. Phys. Chem. B 2000, 104, 12292.

[56]

K. Kobl, L. Angelo, Y. Zimmermann, S. Sall, K. Parkhomenko, A. C. Roger, C. R. Chim. 2015, 18, 302.

[57]

K. R. Phillips, S. C. Jensen, M. Baron, S. C. Li, C. M. Friend, J. Am. Chem. Soc. 2013, 135, 574.

[58]

C. Zhang, H. He, K. Ichi Tanaka, Appl. Catal. B 2006, 65, 37.

[59]

C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. Flytzani-Stephanopoulos, H. He, C. Zhang, F. Liu, Y. Liu, H. He, Y. Zhai, N. Yi, M. Flytzani-Stephanopoulos, H. Ariga, K. Asakura, Angew. Chem. Int. Ed. 2012, 51, 9628.

[60]

G. B. Deacon, R. J. Phillips, Coord. Chem. Rev. 1980, 33, 227.

[61]

C. C. R. Sutton, G. Da Silva, G. V. Franks, Chem. A Eur. J. 2015, 21, 6801.

[62]

M. Chen, H. Wang, X. Chen, F. Wang, X. Qin, C. Zhang, H. He, Chem. Eng. J. 2020, 390, 124481.

[63]

K. Wenderich, K. Zhu, Y. Bu, F. D. Tichelaar, G. Mul, A. Huijser, J. Phys. Chem. C 2023, 127, 14353.

[64]

P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 2018, 9, 6814.

[65]

M. El-Maazawi, A. N. Finken, A. B. Nair, V. H. Grassian, J. Catal. 2000, 191, 138.

[66]

R. Brüninghoff, K. Wenderich, J. P. Korterik, B. T. Mei, G. Mul, A. Huijser, J. Phys. Chem. C 2019, 123, 26653.

[67]

J. J. Snellenburg, S. Laptenok, R. Seger, K. M. Mullen, I. H. M. van Stokkum, J. Stat. Softw. 2012, 49(3), 1.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/