In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries

Yonghwan Kim , Dohyeong Kim , Minjun Bae , Yujin Chang , Won Young An , Hwichan Hong , Seon Jae Hwang , Dongwan Kim , Jeongyeon Lee , Yuanzhe Piao

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12861

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12861 DOI: 10.1002/eem2.12861
RESEARCH ARTICLE

In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries

Author information +
History +
PDF

Abstract

Regulating lithium (Li) plating/stripping behavior in three-dimensional (3D) conductive scaffolds is critical to stabilizing Li metal batteries (LMBs). Surface protrusions and roughness in these scaffolds can induce uneven distributions of the electric fields and ionic concentrations, forming “hot spots.” Hot spots may cause uncontrollable Li dendrites growth, presenting significant challenges to the cycle stability and safety of LMBs. To address these issues, we construct a Li ionic conductive-dielectric gradient bifunctional interlayer (ICDL) onto a 3D Li-injected graphene/carbon nanotube scaffold (LGCF) via in situ reaction of exfoliated hexagonal boron nitride (fhBN) and molten Li. Microscopic and spectroscopic analyses reveal that ICDL consists of fhBN-rich outer layer and inner layer enriched with Li3N and Li-boron composites (Li-B). The outer layer utilizes dielectric properties to effectively homogenize the electric field, while the inner layer ensures high Li ion conductivity. Moreover, DFT calculations indicate that ICDL can effectively adsorb Li and decrease the Li diffusion barrier, promoting enhanced Li ion transport. The modulation of Li kinetics by ICDL increases the critical length of the Li nucleus, enabling suppression of Li dendrite growth. Attributing to these advantages, the ICDL-coated LGCF (ICDL@LGCF) demonstrates impressive long-term cycle performances in both symmetric cells and full cells.

Keywords

3D conductive scaffolds / bifunctional interlayer / dielectric / Li ion conductivity / lithium metal anodes

Cite this article

Download citation ▾
Yonghwan Kim, Dohyeong Kim, Minjun Bae, Yujin Chang, Won Young An, Hwichan Hong, Seon Jae Hwang, Dongwan Kim, Jeongyeon Lee, Yuanzhe Piao. In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries. Energy & Environmental Materials, 2025, 8(3): e12861 DOI:10.1002/eem2.12861

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.

[2]

W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513.

[3]

J. Janek, W. G. Zeier, Nat. Energy 2016, 1, 16141.

[4]

Y. Zhang, T. T. Zuo, J. Popovic, K. Lim, Y. X. Yin, J. Maier, Y. G. Guo, Mater. Today 2020, 33, 56.

[5]

Z. Hu, S. Zhang, S. Dong, Q. Li, G. Cui, L. Chen, Chem. Mater. 2018, 30, 4039.

[6]

L. Chen, X. Fan, X. Ji, J. Chen, S. Hou, C. Wang, Joule 2019, 3, 732.

[7]

Y. Guo, H. Li, T. Zhai, Adv. Mater. 2017, 29, 1700007.

[8]

G. Wang, X. Xiong, D. Xie, X. Fu, X. Ma, Y. Li, Y. Liu, Z. Lin, C. Yang, M. Liu, Energy Storage Mater. 2019, 23, 701.

[9]

C. Yan, X. B. Cheng, Y. X. Yao, X. Shen, B. Q. Li, W. J. Li, R. Zhang, J. Q. Huang, H. Li, Q. Zhang, Adv. Mater. 2018, 30, 1804461.

[10]

G. Bieker, M. Winter, P. Bieker, Phys. Chem. Chem. Phys. 2015, 17, 8670.

[11]

X. Shen, R. Zhang, X. Chen, X. B. Cheng, X. Li, Q. Zhang, Adv. Energy Mater. 2020, 10, 1903645.

[12]

H. Kim, Y. J. Gong, J. Yoo, Y. S. Kim, J. Mater. Chem. A 2018, 6, 15540.

[13]

J. Zhu, P. Li, X. Chen, D. Legut, Y. Fan, R. Zhang, Y. Lu, X. Cheng, Q. Zhang, Energy Storage Mater. 2019, 16, 426.

[14]

N. W. Li, Y. X. Yin, J. Y. Li, C. H. Zhang, Y. G. Guo, Adv. Sci. 2017, 4, 1600400.

[15]

X. Li, J. Zheng, X. Ren, M. H. Engelhard, W. Zhao, Q. Li, J. G. Zhang, W. Xu, Adv. Energy Mater. 2018, 8, 1703022.

[16]

Y. Ma, Z. Zhou, C. Li, L. Wang, Y. Wang, X. Cheng, P. Zuo, C. Du, H. Huo, Y. Gao, G. Yin, Energy Storage Mater. 2018, 11, 197.

[17]

N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan, L. Wang, P. F. Wang, T. Jin, S. C. Liou, H. Yang, J. Jiang, K. Xu, M. A. Schroeder, X. He, C. Wang, ACS Energy Lett. 2021, 6, 1839.

[18]

D. Wang, H. Liu, M. Li, D. Xia, J. Holoubek, Z. Deng, M. Yu, J. Tian, Z. Shan, S. P. Ong, P. Liu, Z. Chen, Nano Energy 2020, 75, 104889.

[19]

X. Shangguan, G. Xu, Z. Cui, Q. Wang, X. Du, K. Chen, S. Huang, G. Jia, F. Li, X. Wang, D. Lu, S. Dong, G. Cui, Small 2019, 15, 1900269.

[20]

X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Sci. Adv. 2018, 4, eaau9245.

[21]

X. Q. Zhang, T. Li, B. Q. Li, R. Zhang, P. Shi, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3252.

[22]

H. Duan, Y. X. Yin, Y. Shi, P. F. Wang, X. D. Zhang, C. P. Yang, J. L. Shi, R. Wen, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 2018, 140, 82.

[23]

S. H. Lee, J. Y. Hwang, J. Ming, H. Kim, H. G. Jung, Y. K. Sun, ACS Energy Lett. 2021, 6, 2153.

[24]

C. Z. Zhao, B. C. Zhao, C. Yan, X. Q. Zhang, J. Q. Huang, Y. Mo, X. Xu, H. Li, Q. Zhang, Energy Storage Mater. 2020, 24, 75.

[25]

M. Bae, Y. Kim, J. Choi, S. Park, L. Lin, T. Yoo, H. Hong, D. Jung, Y. Piao, Carbon 2022, 196, 663.

[26]

S. S. Chi, Y. Liu, W. L. Song, L. Z. Fan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1700348.

[27]

Y. Lv, Q. Zhang, C. Li, C. Ma, W. Guan, X. Liu, Y. Ding, ACS Sustain. Chem. Eng. 2022, 10, 7188.

[28]

W. Song, S. Cui, J. Zhang, S. Fan, L. Chen, H. M. Zhang, Y. Zhang, X. Meng, ACS Appl. Mater. Interfaces 2023, 15, 9421.

[29]

H. Qiu, T. Tang, M. Asif, X. Huang, Y. Hou, Adv. Funct. Mater. 2019, 29, 1808468.

[30]

Y. Zhao, Q. Sun, X. Li, C. Wang, Y. Sun, K. R. Adair, R. Li, X. Sun, Nano Energy 2018, 43, 368.

[31]

Q. Chen, Y. Wei, X. Zhang, Z. Yang, F. Wang, W. Liu, J. Zuo, X. Gu, Y. Yao, X. Wang, Adv. Energy Mater. 2022, 12, 2200072.

[32]

Y. H. Kim, G. W. Lee, Y. J. Choi, H. S. Choi, K. B. Kim, Adv. Funct. Mater. 2022, 32, 2113316.

[33]

D. J. Yoo, A. Elabd, S. Choi, Y. Cho, J. Kim, S. J. Lee, S. H. Choi, T. W. Kwon, K. Char, K. J. Kim, A. Coskun, J. W. Choi, Adv. Mater. 2019, 31, 1901645.

[34]

D. Lin, Y. Liu, Z. Liang, H. W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 2016, 11, 626.

[35]

G. Huang, J. Han, F. Zhang, Z. Wang, H. Kashani, K. Watanabe, M. Chen, Adv. Mater. 2019, 31, 1805334.

[36]

L. Enze, J. Phys. D. Appl. Phys. 1987, 20, 1609.

[37]

M. Bae, S. J. Park, M. Kim, E. Kwon, S. Yu, J. Choi, Y. Chang, Y. Kim, Y. J. Choi, H. Hong, L. Lin, W. Zhang, S. Park, J. Y. Maeng, J. Park, S. Y. Lee, S. H. Yu, Y. Piao, Adv. Energy Mater. 2024, 14, 2304101.

[38]

Y. He, Y. Zhang, H. M. K. Sari, Z. Wang, Z. , X. Huang, Z. Liu, J. Zhang, X. Li, Nano Energy 2021, 89, 106334.

[39]

Y. Zhang, M. Yao, T. Wang, H. Wu, Y. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202403399.

[40]

T. Yu, T. Zhao, N. Zhang, T. Xue, Y. Chen, Y. Ye, F. Wu, R. Chen, Nano Lett. 2023, 23, 276.

[41]

C. Wang, M. Liu, M. Thijs, F. G. Ooms, S. Ganapathy, M. Wagemaker, Nat. Commun. 2021, 12, 6536.

[42]

M. Ye, X. Jin, X. Nan, J. Gao, L. Qu, Energy Storage Mater. 2020, 24, 153.

[43]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, ACS Nano 2012, 6, 8583.

[44]

Z. Wang, S. Qin, F. Chen, S. Chen, D. Liu, D. Jiang, P. Zhang, P. Mota Santiago, D. Hegh, P. Lynch, ACS Nano 2024, 18, 3531.

[45]

J. Wu, X. Li, Z. Rao, X. Xu, Z. Cheng, Y. Liao, L. Yuan, X. Xie, Z. Li, Y. Huang, Nano Energy 2020, 72, 104725.

[46]

Y. Luo, T. Li, H. Zhang, W. Liu, X. Zhang, J. Yan, H. Zhang, X. Li, Angew. Chem. Int. Ed. 2021, 60, 11718.

[47]

M. Li, X. Yang, D. Wu, Q. Zhang, X. Wei, Y. Cheng, M. D. Gu, ACS Appl. Mater. Interfaces 2023,

[48]

M. R. Shaik, M. Bissannagari, Y. M. Kwon, K. Y. Cho, J. Kim, S. Yoon, J. Chem. Eng. 2021, 424, 130326.

[49]

X. An, Y. Liu, K. Yang, J. Mi, J. Ma, D. Zhang, L. Chen, X. Liu, S. Guo, Y. Li, Y. Ma, M. Liu, Y. B. He, F. Kang, Adv. Mater. 2024, 36, 2311195.

[50]

J. Wen, Y. Huang, J. Duan, Y. Wu, W. Luo, L. Zhou, C. Hu, L. Huang, X. Zheng, W. Yang, Z. Wen, Y. Huang, ACS Nano 2019, 13, 14549.

[51]

Y. Huang, B. Chen, J. Duan, F. Yang, T. Wang, Z. Wang, W. Yang, C. Hu, W. Luo, Y. Huang, Angew. Chem. Int. Ed. 2020, 59, 3699.

[52]

E. K. Jang, J. Ahn, S. Yoon, K. Y. Cho, Adv. Funct. Mater. 2019, 29, 1905078.

[53]

Y. Liu, C. Sun, Y. Lu, X. Lin, M. Chen, Y. Xie, C. Lai, W. Yan, J. Chem. Eng. 2023, 451, 138570.

[54]

X. L. Li, S. Huang, D. Yan, J. Zhang, D. Fang, Y. V. Lim, Y. Wang, T. C. Li, Y. Li, L. Guo, H. Y. Yang, Energy Environ. Mater. 2023, 6, e12274.

[55]

K. Zhu, P. Xue, G. Cheng, M. Wang, H. Wang, C. Bao, K. Zhang, Q. Li, J. Sun, S. Guo, Y. Yao, C. P. Wong, Energy Storage Mater. 2021, 43, 130.

[56]

Q. Cheng, A. Li, N. Li, S. Li, A. Zangiabadi, T.-D. Li, W. Huang, A. C. Li, T. Jin, Q. Song, W. Xu, N. Ni, H. Zhai, M. Dontigny, K. Zaghib, X. Chuan, D. Su, K. Yan, Y. Yang, Joule 2019, 3, 1510.

[57]

J. Cai, W. Jolie, C. C. Silva, M. Petrović, C. Schlueter, T. Michely, M. Kralj, T. L. Lee, C. Busse, Phys. Rev. B 2018, 98, 195443.

[58]

P. R. Kidambi, R. Blume, J. Kling, J. B. Wagner, C. Baehtz, R. S. Weatherup, R. Schloegl, B. C. Bayer, S. Hofmann, Chem. Mater. 2014, 26, 6380.

[59]

S. Xia, X. Zhang, L. Luo, Y. Pang, J. Yang, Y. Huang, S. Zheng, Small 2021, 17, 2006002.

[60]

P. Shi, T. Li, R. Zhang, X. Shen, X. B. Cheng, R. Xu, J. Q. Huang, X. R. Chen, H. Liu, Q. Zhang, Adv. Mater. 2019, 31, 1807131.

[61]

M. Wan, X. Duan, H. Cui, J. Du, L. Fu, Z. Chen, Z. Lu, G. Li, Y. Li, E. Mao, L. Wang, Y. Sun, Energy Storage Mater. 2022, 46, 563.

[62]

C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Adv. Funct. Mater. 2022, 32, 2107249.

[63]

W. Cao, W. Chen, M. Lu, C. Zhang, D. Tian, L. Wang, F. Yu, J. Energy Chem. 2023, 76, 648.

[64]

S. Huang, K. Long, Y. Chen, T. Naren, P. Qing, X. Ji, W. Wei, Z. Wu, L. Chen, Nanomicro Lett. 2023, 15, 235.

[65]

X. D. Li, Y. M. Zhao, Y. F. Tian, Z. Y. Lu, M. Fan, X. S. Zhang, H. Tian, Q. Xu, H. L. Li, Y. G. Guo, ACS Appl. Mater. Interfaces 2022, 14, 27854.

[66]

J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi, A. Pei, J. Sun, R. Zhang, B. Kong, R. Subbaraman, Sci. Adv. 2017, 3, eaao3170.

[67]

F. Zhu, Z. Zhang, J. Gu, J. Xu, S. Eitssayeam, Q. Xu, P. Shi, Y. Min, J. Colloid, Interface Sci. 2023, 650, 622.

[68]

Y. H. Tan, Z. Liu, J.-H. Zheng, Z. J. Ju, X. Y. He, W. Hao, Y. C. Wu, W. S. Xu, H. J. Zhang, G. Q. Li, L. S. Zhou, F. Zhou, X. Tao, H. B. Yao, Z. Liang, Adv. Mater. 2024, 36, 2404815.

[69]

C. Lu, M. Tian, X. Zheng, C. Wei, M. H. Rummeli, P. Strasser, R. Yang, J. Chem. Eng. 2022, 430, 132722.

[70]

S. Li, X. S. Wang, Q. D. Li, Q. Liu, P. R. Shi, J. Yu, W. Lv, F. Kang, Y. B. He, Q. H. Yang, J. Mater. Chem. A 2021, 9, 7667.

[71]

S. Xia, F. Li, X. Zhang, L. Luo, Y. Zhang, T. Yuan, Y. Pang, J. Yang, W. Liu, Z. Guo, ACS Nano 2023, 17, 20689.

[72]

Y. Zhao, D. Wang, Y. Gao, T. Chen, Q. Huang, D. Wang, Nano Energy 2019, 64, 103893.

[73]

H. Zhang, S. Ju, G. Xia, D. Sun, X. Yu, Adv. Funct. Mater. 2021, 31, 2009712.

[74]

C. Chen, Q. Zhou, X. Li, B. Zhao, Y. Chen, X. Xiong, Small Methods 2024, 8, 2300839.

[75]

C. Yan, X. B. Cheng, Y. Tian, X. Chen, X. Q. Zhang, W. J. Li, J. Q. Huang, Q. Zhang, Adv. Mater. 2018, 30, 1707629.

[76]

D. Wu, J. He, J. Liu, M. Wu, S. Qi, H. Wang, J. Huang, F. Li, D. Tang, J. Ma, Adv. Energy Mater. 2022, 12, 2200337.

[77]

Y. Guo, S. Pan, X. Yi, S. Chi, X. Yin, C. Geng, Q. Yin, Q. Zhan, Z. Zhao, F.-M. Jin, H. Fang, Y. B. He, F. Kang, S. Wu, Q. H. Yang, Adv. Mater. 2024, 36, 2308493.

[78]

D. Kang, S. Sardar, R. Zhang, H. Noam, J. Chen, L. Ma, W. Liang, C. Shi, J. P. Lemmon, Energy Storage Mater. 2020, 27, 69.

[79]

D. Han, Z. Wang, S. Chen, J. Zhou, S. Chen, M. Wang, D. Wu, X. Meng, C. W. Bielawski, J. Geng, Small 2024,

[80]

H. Song, J. Lee, M. Sagong, J. Jeon, Y. Han, J. Kim, H. G. Jung, J.-S. Yu, J. Lee, I.-D. Kim, Adv. Mater. 2024,

[81]

J. Sarnthein, K. Schwarz, P. Blöchl, Phys. Rev. B 1996, 53, 9084.

[82]

W. Li, G. Wu, C. M. Araújo, R. H. Scheicher, A. Blomqvist, R. Ahuja, Z. Xiong, Y. Feng, P. Chen, Energy Environ. Sci. 2010, 3, 1524.

[83]

W. Plieth, Electrochemistry for Materials Science, 1st Edition, Elsevier, Amsterdam; Oxford 2008.

[84]

A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132.

[85]

J. Lopez, A. Pei, J. Y. Oh, G. N. Wang, Y. Cui, Z. Bao, J. Am. Chem. Soc. 2018, 140, 11735.

[86]

S. Xia, C. Li, J. A. Yuwono, Y. Wang, C. Wang, X. Zhang, J. Yang, J. Mao, S. Zheng, Z. Guo, Angew. Chem. Int. Ed. 2024, 63, e202409327.

[87]

L. Lin, L. Suo, Y. s. Hu, H. Li, X. Huang, L. Chen, Adv. Energy Mater. 2021, 11, 2003709.

[88]

Y. Li, M. Liu, K. Wang, C. Li, Y. Lu, A. Choudhary, T. Ottley, D. Bedrov, L. Xing, W. Li, Adv. Energy Mater. 2023, 13, 2300918.

[89]

G. W. Lee, Y. J. Choi, Y. H. Kim, S. g. Choi, H. S. Choi, H. K. Kim, K. B. Kim, Carbon 2022, 198, 289.

[90]

Z. Luo, S. Li, L. Yang, Y. Tian, L. Xu, G. Zou, H. Hou, W. Wei, L. Chen, X. Ji, Nano Energy 2021, 87, 106212.

[91]

H. Xu, Y. He, Z. Zhang, J. Shi, P. Liu, Z. Tian, K. Luo, X. Zhang, S. Liang, Z. Liu, J. Energy Chem. 2020, 48, 375.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/