Highly Ion-Conductive 3D Hybrid Solid Polymer Electrolyte Using Al-Doped Li7La3Zr2O12 Embedded Electrospun 3D Nanowebs for Ambient-Temperature All-Solid Lithium Polymer Batteries

Getachew Mengesha Biressaw , Tien Manh Nguyen , Do Youb Kim , Dong Wook Kim , Jungdon Suk , Yongku Kang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12860

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12860 DOI: 10.1002/eem2.12860
RESEARCH ARTICLE

Highly Ion-Conductive 3D Hybrid Solid Polymer Electrolyte Using Al-Doped Li7La3Zr2O12 Embedded Electrospun 3D Nanowebs for Ambient-Temperature All-Solid Lithium Polymer Batteries

Author information +
History +
PDF

Abstract

Solid polymer electrolytes have garnered significant attention for lithium batteries because of their flexibility and safety. However, poor ionic conductivity, lithium dendrite formation, and high impedance hinder their practical application. In this study, a thin, flexible, 3D hybrid solid electrolyte (3DHSE) is prepared by in situ thermal cross-linking polymerization with electrospun 3D nanowebs. The 3DHSE comprises Al-doped Li7La3Zr2O12 (ALLZO) embedded in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nonwoven 3D nanowebs and an in situ cross-linked polyethylene oxide (PEO)-based solid polymer electrolyte. The 3DHSE exhibits high tensile strength (6.55 MPa), a strain of 40.28%, enhanced ionic conductivity (7.86 × 10–4 S cm–1), and a superior lithium-ion transference number (0.76) to that of the PVDF-HFP-based solid polymer electrolyte (PSPE). This enables highly stable lithium plating/stripping cycling for over 900 h at 25 °C with a current density of 0.2 mA cm–2. The LiNi0.8Mn0.1Co0.1O2 (NCM811)/3DHSE/Li cell has a higher capacity (140.56 mAh g–1 at 0.1 C) than the NCM811/PSPE/Li cell (124.88 mAh g–1 at 0.1 C) at 25 °C. The 3DHSE enhances mechanical properties, stabilizes interfacial contact, improves ion transport, prevents NCM811 cracking, and significantly boosts cycling performance. This study highlights the potential of the 3DHSE as a candidate for advanced lithium polymer battery technology.

Keywords

3D hybrid solid electrolytes / 3D nanowebs / in situ cross-linked / lithium polymer batteries / polymer electrolyte

Cite this article

Download citation ▾
Getachew Mengesha Biressaw, Tien Manh Nguyen, Do Youb Kim, Dong Wook Kim, Jungdon Suk, Yongku Kang. Highly Ion-Conductive 3D Hybrid Solid Polymer Electrolyte Using Al-Doped Li7La3Zr2O12 Embedded Electrospun 3D Nanowebs for Ambient-Temperature All-Solid Lithium Polymer Batteries. Energy & Environmental Materials, 2025, 8(3): e12860 DOI:10.1002/eem2.12860

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J.-M. Tarascon, M. Armand, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (Ed: V. Dusastre), World Scientific Publishing, Singapore 2011, p. 171.

[2]

W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 2014, 7, 513.

[3]

D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.

[4]

H. Cha, J. Kim, Y. Lee, J. Cho, M. Park, Small 2018, 14, 1702989.

[5]

J. Pan, P. Zhao, N. Wang, F. Huang, S. Dou, Energy Environ. Sci. 2022, 15, 2753.

[6]

C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, J. Zhang, Nano Energy 2017, 33, 363.

[7]

R. Chen, W. Qu, X. Guo, L. Li, F. Wu, Mater. Horiz. 2016, 3, 487.

[8]

S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He, Q. H. Yang, Adv. Sci. 2020, 7, 1903088.

[9]

Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Adv. Mater. 2018, 30, 1870122.

[10]

L. Liu, J. Lyu, J. Mo, H. Yan, L. Xu, P. Peng, J. Li, B. Jiang, L. Chu, M. Li, Nano Energy 2020, 69, 104398.

[11]

Y. Seo, Y.-C. Jung, M.-S. Park, D.-W. Kim, J. Membr. Sci. 2020, 603, 117995.

[12]

Z. Xue, D. He, X. Xie, J. Mater. Chem. 2015, 3, 19218.

[13]

Z. Wang, J. Chen, J. Fu, Z. Li, X. Guo, Energy Mater. 2024, 4, 400050.

[14]

T. M. Nguyen, D. W. Kim, D. Y. Kim, G. Choi, J. Suk, Y. Kang, ACS Appl. Energy Mater. 2022, 5, 15768.

[15]

P. Fan, H. Liu, V. Marosz, N. T. Samuels, S. L. Suib, L. Sun, L. Liao, Adv. Funct. Mater. 2021, 31, 2101380.

[16]

J. Wang, J. Yang, L. Shen, Q. Guo, H. He, X. Yao, ACS Appl. Energy Mater. 2021, 4, 4129.

[17]

B. Peng, Z. Liu, Q. Zhou, X. Xiong, S. Xia, X. Yuan, F. Wang, K. I. Ozoemena, L. Liu, L. Fu, Adv. Mater. 2024, 36, 2307142.

[18]

S. Liu, H. Shan, S. Xia, J. Yan, J. Yu, B. Ding, ACS Appl. Mater. Interfaces 2020, 12, 31439.

[19]

A. R. Polu, H.-W. Rhee, J. Ind. Eng. Chem. 2016, 37, 347.

[20]

X. Ao, X. Wang, J. Tan, S. Zhang, C. Su, L. Dong, M. Tang, Z. Wang, B. Tian, H. Wang, Nano Energy 2021, 79, 105475.

[21]

M. R. Johan, O. H. Shy, S. Ibrahim, S. M. M. Yassin, T. Y. Hui, Solid State Ionics 2011, 196, 41.

[22]

M.-x. Jing, H. Yang, H. Chong, F. Chen, L.-k. Zhang, X.-y. Hu, F.-y. Tu, X.-q. Shen, J. Electrochem. Soc. 2019, 166, A3019.

[23]

Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q. H. Yang, Adv. Funct. Mater. 2019, 29, 1805301.

[24]

Q. Guo, F. Xu, L. Shen, Z. Wang, J. Wang, H. He, X. Yao, J. Power Sources 2021, 498, 229934.

[25]

E. Zhao, Y. Guo, Y. Xin, G. Xu, X. Guo, Int. J. Energy Res. 2021, 45, 6876.

[26]

H. Zhang, X. An, Z. Lu, L. Liu, H. Cao, Q. Xu, H. Liu, Y. Ni, J. Power Sources 2020, 477, 228752.

[27]

K. K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Y. Li, E. D. Wachsman, L. Hu, Proc. Natl. Acad. Sci. USA 2016, 113, 7094.

[28]

D. Li, L. Chen, T. Wang, L.-Z. Fan, ACS Appl. Mater. Interfaces 2018, 10, 7069.

[29]

Z. Guo, Y. Pang, S. Xia, F. Xu, J. Yang, L. Sun, S. Zheng, Adv. Sci. 2021, 8, 2100899.

[30]

W. He, H. Ding, X. Chen, W. Yang, J. Membr. Sci. 2022, 665, 121095.

[31]

Q. Zhou, X. Yang, X. Xiong, Q. Zhang, B. Peng, Y. Chen, Z. Wang, L. Fu, Y. Wu, Adv. Energy Mater. 2022, 12, 2201991.

[32]

M. A. Cabañero Martínez, N. Boaretto, A. J. Naylor, F. Alcaide, G. D. Salian, F. Palombarini, E. Ayerbe, M. Borras, M. Casas-Cabanas, Adv. Energy Mater. 2022, 12, 2201264.

[33]

Z. Bi, X. Guo, Energy Mater. 2022, 2, 200011.

[34]

Y. Lin, M. Wu, J. Sun, L. Zhang, Q. Jian, T. Zhao, Adv. Energy Mater. 2021, 11, 2101612.

[35]

P. Yadav, M. S. Hosen, P. K. Dammala, P. Ivanchenko, J. Van Mierlo, M. Berecibar, Solid State Ionics 2023, 399, 116308.

[36]

C. Gao, X. Li, G. Wei, S. Wang, X. Zhao, F. Kong, Ind. Crop. Prod. 2023, 195, 116426.

[37]

J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang, X. He, Nano Converg. 2021,

[38]

X. Liu, Z. Xiao, H. Peng, D. Jiang, H. Xie, Y. Sun, S. Zhong, Z. Qian, R. Wang, Chem. Asian J. 2022, 17, e202200929.

[39]

Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Adv. Mater. 2019, 31, 1902029.

[40]

Y. Horowitz, M. Lifshitz, A. Greenbaum, Y. Feldman, S. Greenbaum, A. P. Sokolov, D. Golodnitsky, J. Electrochem. Soc. 2020, 167, 160514.

[41]

W. Wang, E. Yi, A. J. Fici, R. M. Laine, J. Kieffer, J. Phys. Chem. 2017, 121, 2563.

[42]

S. Das, A. Ghosh, J. Appl. Phys. 2016, 119, 095101.

[43]

Z. Zhao, F. Li, J. Zhao, G. Ding, J. Wang, X. Du, Q. Zhou, G. Hou, G. Cui, Adv. Funct. Mater. 2020, 30, 2000347.

[44]

D. Kim, X. Liu, B. Yu, S. Mateti, L. A. O'Dell, Q. Rong, Y. Chen, Adv. Funct. Mater. 2020, 30, 1910813.

[45]

C.-Z. Zhao, X.-Q. Zhang, X.-B. Cheng, R. Zhang, R. Xu, P.-Y. Chen, H.-J. Peng, J.-Q. Huang, Q. Zhang, Proc. Natl. Acad. Sci. USA 2017, 114, 11069.

[46]

X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.-W. Nan, Y. Shen, J. Am. Chem. Soc. 2017, 139, 13779.

[47]

W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li, H.-W. Lee, Y. Cui, Nano Lett. 2015, 15, 2740.

[48]

J. Cai, Y. Liu, Y. Tan, W. Chang, J. Wu, T. Wu, C. Lai, Appl. Sci. 2024, 14, 3115.

[49]

Q. Zhang, K. Liu, K. Liu, J. Li, C. Ma, L. Zhou, Y. Du, J. Colloid Interface Sci. 2020, 580, 389.

[50]

F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. Hendrickson, Electrochim. Acta 2001, 46, 2457.

[51]

F. Chen, W. Zha, D. Yang, S. Cao, Q. Shen, L. Zhang, D. R. Sadoway, J. Electrochem. Soc. 2018, 165, A3558.

[52]

Z. Wang, Q. Guo, R. Jiang, S. Deng, J. Ma, P. Cui, X. Yao, Chem. Eng. 2022, 435, 135106.

[53]

K. Deng, J. Qin, S. Wang, S. Ren, D. Han, M. Xiao, Y. Meng, Small 2018, 14, 1801420.

[54]

C. Fang, B. Lu, G. Pawar, M. Zhang, D. Cheng, S. Chen, M. Ceja, J.-M. Doux, H. Musrock, M. Cai, Nat. Energy 2021, 6, 987.

[55]

R. Rojaee, S. Cavallo, S. Mogurampelly, B. K. Wheatle, V. Yurkiv, R. Deivanayagam, T. Foroozan, M. G. Rasul, S. Sharifi-Asl, A. H. Phakatkar, Adv. Funct. Mater. 2020, 30, 1910749.

[56]

J. Wu, H. Zeng, Q. Shi, X. Li, Q. Xia, Z. Xue, Y. Ye, X. Xie, J. Power Sources 2018, 405, 7.

[57]

Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang, L. Cui, F. Jiang, Q. Wang, Y. Zhang, G. Cui, Adv. Sci. 2021, 8, 2003887.

[58]

R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J. O. Binder, P. Hartmann, W. G. Zeier, J. R. Janek, Chem. Mater. 2017, 29, 5574.

[59]

H. T. Le, D. T. Ngo, R. S. Kalubarme, G. Cao, C.-N. Park, C.-J. Park, ACS Appl. Mater. Interfaces 2016, 8, 20710.

[60]

C.-M. Yang, H.-S. Kim, B.-K. Na, K.-S. Kum, B. W. Cho, J. Power Sources 2006, 156, 574.

[61]

A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, NPJ Comput. Mater. 2018,

[62]

J. Lu, Y. Liu, P. Yao, Z. Ding, Q. Tang, J. Wu, Z. Ye, K. Huang, X. Liu, Chem. Eng. 2019, 367, 230.

[63]

C.-Z. Zhao, P.-Y. Chen, R. Zhang, X. Chen, B.-Q. Li, X.-Q. Zhang, X.-B. Cheng, Q. Zhang, Sci. Adv. 2018, 4, eaat3446.

[64]

S. Lee, L. Su, A. Mesnier, Z. Cui, A. Manthiram, Joule 2023, 7, 2430.

[65]

Z. Li, R. Yu, S. Weng, Q. Zhang, X. Wang, X. Guo, Nat. Commun. 2023, 14, 482.

[66]

Q. Guo, F. Xu, L. Shen, S. Deng, Z. Wang, M. Li, X. Yao, Energy Mater. Adv. 2022, 2022.

[67]

G. M. Overhoff, M. Y. Ali, J.-P. Brinkmann, P. Lennartz, H. Orthner, M. Hammad, H. Wiggers, M. Winter, G. Brunklaus, ACS Appl. Mater. Interfaces 2022, 14, 53636.

[68]

D. Zhou, M. Zhang, F. Sun, T. Arlt, J. E. Frerichs, K. Dong, J. Wang, A. Hilger, F. Wilde, M. Kolek, Nano Energy 2020, 77, 105196.

[69]

W. Lu, M. Xue, C. Zhang, Energy Storage Mater. 2021, 39, 108.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/