Volumetric Stress Managements on Silicon Anode of Lithium-Ion Batteries by a Self-Adaptable Binder

Shuai Wu , Lanying He , Yue Lu , Jingang Zheng , Lixiang Li , Xin Geng , Chengguo Sun , Hongwei Zhao , Guangshen Jiang , Fang Di , Baigang An

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12859

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12859 DOI: 10.1002/eem2.12859
RESEARCH ARTICLE

Volumetric Stress Managements on Silicon Anode of Lithium-Ion Batteries by a Self-Adaptable Binder

Author information +
History +
PDF

Abstract

The intrinsic volume changes (about 300%) of Si anode during the lithiation/delithiation leads to the serious degradation of battery performance despite of theoretical capacity of 3579 mAh g–1 of Si. Herein, a three-dimensional (3D) conductive polymer binder with adjustable crosslinking density has been designed by employing citric acid (CA) as a crosslinker between the carboxymethyl cellulose (CMC) and the poly(3,4-ethylenedioxythiophene) poly-(styrene-4-sulfonate) (PEDOT:PSS) to stabilize Si anode. By adjusting the crosslinking density, the binder can achieve a balance between rigidity and flexibility to adapt the volume expansion upon lithiation and reversible volume recovery after delithiation of Si. Therefore, Si/CMC-CA-PEDOT:PSS (Si/CCP) electrode demonstrates an excellent performance with high capacities of 2792.3 mAh g–1 at 0.5 A g–1 and a high area capacity above 2.6 mAh cm–2 under Si loading of 1.38 mg cm–2. The full cell Si/CCP paired with Li(Ni0.8Co0.1Mn0.1)O2 cathode discharges a capacity of 199.0 mAh g–1 with 84.3% ICE at 0.1 C and the capacity retention of 95.6% after 100 cycles. This work validates the effectiveness of 3D polymer binder and provides new insights to boost the performance of Si anode.

Keywords

3D conductive polymer binder / crosslinking density / self-adapting / silicon anode

Cite this article

Download citation ▾
Shuai Wu, Lanying He, Yue Lu, Jingang Zheng, Lixiang Li, Xin Geng, Chengguo Sun, Hongwei Zhao, Guangshen Jiang, Fang Di, Baigang An. Volumetric Stress Managements on Silicon Anode of Lithium-Ion Batteries by a Self-Adaptable Binder. Energy & Environmental Materials, 2025, 8(3): e12859 DOI:10.1002/eem2.12859

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Yang, S. Wu, Y. Zhang, C. Liu, X. Wei, D. Luo, Z. Lin, Chem. Eng. J. 2021, 406, 126807.

[2]

A. N. Preman, H. Lee, J. Yoo, I. T. Kim, T. Saito, S. K. Ahn, J. Mater. Chem. A 2020, 8, 25548.

[3]

M. N. Ramdhiny, J. W. Jeon, Carbon Energy 2024, 6, e356.

[4]

Y. Liu, R. Shao, R. Jiang, X. Song, Z. Jin, L. Sun, Nano Res. 2023, 16, 6736.

[5]

S. W. Lee, M. T. McDowell, J. W. Choi, Y. Cui, Nano Lett. 2011, 11, 3034.

[6]

M. N. Obrovac, L. Christensen, Electrochem. Solid State Lett. 2004, 7, A93.

[7]

Y. Zhang, N. Du, D. Yang, Nanoscale 2019, 11, 19086.

[8]

L. Sun, Y. Liu, J. Wu, R. Shao, R. Jiang, Z. Tie, Z. Jin, Small 2022, 18, 2102894.

[9]

M. Kim, Z. Yang, I. Bloom, J. Electrochem. Soc. 2021, 168, 010523.

[10]

X. Zhan, M. Li, S. Li, X. Pang, F. Mao, H. Wang, Z. Sun, X. Han, B. Jiang, Y. B. He, Energy Storage Mater. 2023, 61, 102875.

[11]

Z. Cheng, H. Jiang, X. Zhang, F. Cheng, M. Wu, H. Zhang, Adv. Funct. Mater. 2023, 33, 2301109.

[12]

I. S. Amiinu, S. Imtiaz, H. Geaney, T. Kennedy, N. Kapuria, S. Singh, K. M. Ryan, Energy Chem. 2023, 81, 20.

[13]

X. Wang, Y. Wang, H. Ma, Z. Wang, X. Xu, X. Huang, ACS Appl. Mater. Interfaces 2023, 15, 15409.

[14]

Z. Liu, X. Chang, T. Wang, W. Li, H. Ju, X. Zheng, X. Wu, C. Wang, J. Zheng, X. Li, ACS Nano 2017, 11, 6065.

[15]

X. Xue, X. Liu, B. Lou, Y. Yang, N. Shi, F. Wen, X. Yang, D. Liu, J. Energy Chem. 2023, 84, 292.

[16]

M. Zhao, J. Zhang, X. Zhang, K. Duan, H. Dong, S. Lanceros-Méndez, W. Wang, Q. Zhang, Energy Storage Mater. 2023, 61, 102857.

[17]

Y. H. Kim, S. G. Choi, K. Y. Chung, G. W. Lee, Y. G. Choi, K. B. Kim, Small 2023, 19, 2301744.

[18]

S. Mei, S. Guo, B. Xiang, J. Deng, J. Fu, X. Zhang, Y. Zheng, B. Gao, P. K. Chu, K. Huo, J. Energy Chem. 2022, 69, 616.

[19]

R. F. H. Hernandha, B. Umesh, P. C. Rath, L. T. T. Trang, J. C. Wei, Y. C. Chuang, J. Li, J. K. Chang, Adv. Sci. 2023, 10, 2301218.

[20]

S. Mei, B. Xiang, S. Guo, J. Deng, J. Fu, X. Zhang, Y. Zheng, B. Gao, K. Huo, P. K. Chu, Adv. Funct. Mater. 2024, 34, 2301217.

[21]

Y. Cai, C. Liu, Z. Yu, W. Ma, Q. Jin, R. Du, B. Qian, X. Jin, H. Wu, Q. Zhang, Adv. Sci. 2023, 10, 2205590.

[22]

Y. Yu, J. Zhu, K. Zeng, M. Jiang, J. Mater. Chem. A 2021, 9, 3472.

[23]

W. Jang, S. Kim, Y. Kang, T. Yim, T. H. Kim, Chem. Eng. J. 2023, 469, 143949.

[24]

L. Hu, M. Jin, Z. Zhang, H. Chen, F. Boorboor Ajdari, J. Song, Adv. Funct. Mater. 2022, 32, 2111560.

[25]

L. Deng, Y. Zheng, X. Zheng, T. Or, Q. Ma, L. Qian, Y. Deng, A. Yu, J. Li, Z. Chen, Adv. Energy Mater. 2022, 12, 2200850.

[26]

M. Wu, W. Yuan, S. J. Park, V. Battaglia, G. Liu, Abstr. Pap. Am. Chem. Soc. 2014, 135, 12048.

[27]

H. Chen, M. Ling, L. Hencz, H. Y. Ling, G. Li, Z. Lin, G. Liu, S. Zhang, Chem. Rev. 2018, 118, 8936.

[28]

Y. M. Zhao, F. S. Yue, S. C. Li, Y. Zhang, Z. R. Tian, Q. Xu, S. Xin, Y. G. Guo, InfoMat 2021, 3, 460.

[29]

Z. Hu, R. Zhao, J. Yang, C. Wu, Y. Bai, Energy Storage Mater. 2023, 59, 102776.

[30]

J. Li, R. Lewis, J. Dahn, Electrochem. Solid State Lett. 2006, 10, A17.

[31]

F. Jeschull, F. Scott, S. Trabesinger, J. Power Sources 2019, 431, 63.

[32]

Z. Y. Wu, L. Deng, J. T. Li, Q. S. Huang, Y. Q. Lu, J. Liu, T. Zhang, L. Huang, S. G. Sun, Electrochim. Acta 2017, 245, 363.

[33]

I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science 2011, 334, 75.

[34]

H. K. Park, B. S. Kong, E. S. Oh, Electrochem. Commun. 2011, 13, 1051.

[35]

A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, G. Yushin, ACS Appl. Mater. Interfaces 2010, 2, 3004.

[36]

Z. Liu, S. Han, C. Xu, Y. Luo, N. Peng, C. Qin, M. Zhou, W. Wang, L. Chen, S. Okada, RSC Adv. 2016, 6, 68371.

[37]

S. Wu, F. Di, J. G. Zheng, H. W. Zhao, H. Zhang, L. X. Li, X. Geng, C. G. Sun, H. M. Yang, W. M. Zhou, D. Y. Ju, B. G. An, New Carbon Mater. 2022, 37, 802.

[38]

T. Li, J. Y. Yang, S. G. Lu, Int. J. Miner. Metall. Materi. 2012, 19, 752.

[39]

D. Shao, H. Zhong, L. Zhang, ChemElectroChem 2014, 1, 1679.

[40]

B. Chen, D. Xu, S. Chai, Z. Chang, A. Pan, Adv. Funct. Mater. 2024, 34, 2401794.

[41]

T. Liu, Q. Chu, C. Yan, S. Zhang, Z. Lin, J. Lu, Adv. Energy Mater. 2019, 9, 1802645.

[42]

L. Li, T. Li, Y. Sha, B. Ren, L. Zhang, S. Zhang, Energy Environ. Mater. 2024, 7, e12482.

[43]

Z. Xu, X. Chu, K. Wang, H. Zhang, Z. He, Y. Xie, W. Yang, J. Materiomics 2023, 9, 378.

[44]

J. Song, Z. Yu, M. L. Gordin, X. Li, H. Peng, D. Wang, ACS Nano 2015, 9, 11933.

[45]

Y. Liu, Z. Tai, T. Zhou, V. Sencadas, J. Zhang, L. Zhang, K. Konstantinov, Z. Guo, H. K. Liu, Adv. Mater. 2017, 29, 1703028.

[46]

C. C. Nguyen, T. Yoon, D. M. Seo, P. Guduru, B. L. Lucht, ACS Appl. Mater. Interfaces 2016, 8, 12211.

[47]

J. He, C. Das, F. Yang, J. Maibach, Electrochim. Acta 2022, 411, 140038.

[48]

Y. Dong, B. Zhang, F. Zhao, F. Gao, D. Liu, Small 2023, 19, 2206858.

[49]

W. Huang, Y. Wang, L. Lv, X. Li, Y. Wang, W. Zheng, H. Zheng, ACS Nano 2023, 17, 2669.

[50]

A. K. Higham, L. A. Garber, D. C. Latshaw, C. K. Hall, J. A. Pojman, S. A. Khan, Macromolecules 2014, 47, 821.

[51]

C. Sandolo, P. Matricardi, F. Alhaique, T. Coviello, Eur. Polym. J. 2007, 43, 3355.

[52]

M. K. Dufficy, R. D. Corder, K. A. Dennis, P. S. Fedkiw, S. A. Khan, ACS Appl. Mater. Interfaces 2021, 13, 51403.

[53]

D. A. Mengistie, P. C. Wang, C. W. Chu, J. Mater. Chem. A 2013, 1, 9907.

[54]

N. J. Kong, M. S. Kim, J. H. Park, J. Kim, J. Jin, H. W. Lee, S. J. Kang, Energy Storage Mater. 2024, 64, 103074.

[55]

Y. Tong, S. Jin, H. Xu, J. Li, Z. Kong, H. Jin, H. Xu, Adv. Sci. 2023, 10, 2205443.

[56]

S. Sun, D. He, P. Li, Y. Liu, Q. Wan, Q. Tan, Z. Liu, F. An, G. Gong, X. Qu, J. Power Sources 2020, 454, 227907.

[57]

X. Wan, C. Kang, T. Mu, J. Zhu, P. Zuo, C. Du, G. Yin, ACS Energy Lett. 2022, 7, 3572.

[58]

J. Zhao, D. Wei, J. Wang, K. Yang, Z. Wang, Z. Chen, S. Zhang, C. Zhang, X. Yang, J. Colloid Interface Sci. 2022, 625, 373.

[59]

Z. Li, Z. Wan, X. Zeng, S. Zhang, L. Yan, J. Ji, H. Wang, Q. Ma, T. Liu, Z. Lin, Nano Energy 2021, 79, 105430.

[60]

P. H. Quang, M. Mirolo, M. Tarik, M. E. Kazzi, S. Trabesinger, Energy Storage Mater. 2020, 33, 216.

[61]

B. Deng, H. Wang, W. Ge, X. Li, X. Yan, T. Chen, M. Qu, G. Peng, Electrochim. Acta 2017, 236, 61.

[62]

Y. Wang, H. Xu, X. Chen, H. Jin, J. Wang, Energy Storage Mater. 2021, 38, 121.

[63]

Y. Kang, N. Dong, F. Liu, D. Lin, B. Liu, G. Tian, S. Qi, D. Wu, J. Energy Chem. 2024, 93, 580.

[64]

Z. Wu, Z. Wan, Z. Li, Q. Du, T. Wu, J. Cao, M. Ling, C. Liang, Y. Tan, Small 2023, 19, 2205065.

[65]

J. Zhao, J. Jing, W. Li, W. Chen, T. Chen, H. Zhong, Y. Wang, J. Fu, Energy Storage Mater. 2023, 63, 102991.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/