Tailoring Binder Molecular Weight to Enhance Slurry-Cast NMC Cathodes for Sulfide Solid-State Batteries

Yuanshun Li , Chanho Kim , Ella Williams , YiFeng Su , Jagjit Nanda , Guang Yang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12858

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12858 DOI: 10.1002/eem2.12858
RESEARCH ARTICLE

Tailoring Binder Molecular Weight to Enhance Slurry-Cast NMC Cathodes for Sulfide Solid-State Batteries

Author information +
History +
PDF

Abstract

We demonstrate for the first time the critical influence of binder molecular weight on the performance of slurry-cast lithium nickel manganese cobalt oxide (NMC) cathodes in sulfide-based all-solid-state batteries (SSBs). SSBs are increasingly recognized as a safer and potentially more efficient alternative to traditional Li-ion batteries, owing to the superior ionic conductivities and inherent safety features of sulfide solid electrolytes. However, the integration of high-voltage NMC cathodes with sheet-type sulfide solid electrolytes presents significant fabrication challenges. Our findings reveal that higher molecular weight binders not only enhance the discharge capacity and cycle life of these cathodes but also ensure robust adhesion and structural integrity. By optimizing binder molecular weights, we effectively shield the active materials from degradation and mechanical stress, significantly boosting the functionality and longevity of SSBs. These results underscore the paramount importance of binder properties in advancing the practical application of high-performance all-solid-state batteries.

Keywords

binders / NMC cathode / sheet-type sulfide solid electrolyte / slurry cast / solid-state battery

Cite this article

Download citation ▾
Yuanshun Li, Chanho Kim, Ella Williams, YiFeng Su, Jagjit Nanda, Guang Yang. Tailoring Binder Molecular Weight to Enhance Slurry-Cast NMC Cathodes for Sulfide Solid-State Batteries. Energy & Environmental Materials, 2025, 8(3): e12858 DOI:10.1002/eem2.12858

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Bai, T. Yu, Z. Ren, S. Gong, R. Yang, C. Zhao, Energy Storage Mater. 2022, 51, 527.

[2]

J. S. Kim, S. Jung, H. Kwak, Y. Han, S. Kim, J. Lim, Y. M. Lee, Y. S. Jung, Energy Storage Mater. 2023, 55, 193.

[3]

S. Deng, Q. Sun, M. Li, K. Adair, C. Yu, J. Li, W. Li, J. Fu, X. Li, R. Li, Y. Hu, N. Chen, H. Huang, L. Zhang, S. Zhao, S. Lu, X. Sun, Energy Storage Mater. 2021, 35, 661.

[4]

C. Wang, K. Adair, X. Sun, Accounts Mater. Res. 2022, 3, 21.

[5]

L. Ye, E. Gil-González, X. Li, Electrochem. Commun. 2021, 128, 107058.

[6]

C. Doerrer, I. Capone, S. Narayanan, J. Liu, C. R. M. Grovenor, M. Pasta, P. S. Grant, ACS Appl. Mater. Interfaces 2021, 13, 37809.

[7]

D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Matter 2020, 3, 57.

[8]

M. S. Diallo, T. Shi, Y. Zhang, X. Peng, I. Shozib, Y. Wang, L. J. Miara, M. C. Scott, Q. H. Tu, G. Ceder, Nat. Commun. 2024, 15, 858.

[9]

M. Kim, J. Seo, J. P. D. Suba, K. Y. Cho, Mater. Chem. Front. 2023, 7, 5475.

[10]

J. H. Teo, F. Strauss, Đ. Tripković, S. Schweidler, Y. Ma, M. Bianchini, J. Janek, T. Brezesinski, Cell Rep. Phys. Sci. 2021, 2, 100465.

[11]

A. Tron, R. Hamid, N. Zhang, A. Beutl, Nanomaterials (Basel) 2023, 13, 327.

[12]

C. Singer, S. Schmalzbauer, R. Daub, J. Energy Storage 2023, 68, 107703.

[13]

A. Tron, R. Hamid, N. Zhang, A. Beutl, Nano 2023, 13, 327.

[14]

A. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater. 2016, 6, 1600655.

[15]

P. Rozier, J. M. Tarascon, J. Electrochem. Soc. 2015, 162, A2490.

[16]

S. Wang, Y. Zhang, X. Zhang, T. Liu, Y.-H. Lin, Y. Shen, L. Li, C.-W. Nan, ACS Appl. Mater. Interfaces 2018, 10, 42279.

[17]

A. Mills, S. Kalnaus, W.-Y. Tsai, Y.-F. Su, E. Williams, X. Zheng, S. Vaidyanathan, D. T. Hallinan, J. Nanda, G. Yang, ACS Energy Lett. 2024, 9, 2677.

[18]

X. Qi, B. Blizanac, A. DuPasquier, M. Oljaca, J. Li, M. Winter, Carbon 2013, 64, 334.

[19]

M. Kuenzel, D. Bresser, G.-T. Kim, P. Axmann, M. Wohlfahrt-Mehrens, S. Passerini, ACS Appl. Energy Mater. 2019, 3, 218.

[20]

X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Adv. Mater. 2016, 28, 9979.

[21]

E. Ligneel, B. Lestriez, D. Guyomard, J. Power Sources 2007, 174, 716.

[22]

H. Liu, X. Cheng, Y. Chong, H. Yuan, J.-Q. Huang, Q. Zhang, Particuology 2021, 57, 56.

[23]

K. T. Kim, D. Y. Oh, S. Jun, Y. B. Song, T. Y. Kwon, Y. Han, Y. S. Jung, Adv. Energy Mater. 2021, 11, 2003766.

[24]

A. Hoffmann, E. A. Heider, C. Dreer, C. Pfeifer, M. Wohlfahrt-Mehrens, Energ. Technol. 2023, 11, 2200484.

[25]

T. P. Plateau, H. Pham, Y. Zhu, M. Leu, J. Park, Adv. Energy Mater. 2022, 12, 2201353.

[26]

C. Yuan, J. Xu, Nano Energy 2024, 121, 109193.

[27]

K. Lee, Y. Jo, J. S. Nam, H. Yu, Y.-J. Kim, Chem. Eng. J. 2024, 487, 150221.

[28]

K. Uzun, B. Sharma, B. R. Frieberg, M. Wang, J. Hu, A. Li, X. Huang, Y.-T. Cheng, J. Electrochem. Soc. 2024, 171, 020516.

[29]

B. Emley, C. Wu, L. Zhao, Q. Ai, Y. Liang, Z. Chen, L. Guo, T. Terlier, J. Lou, Z. Fan, Mater. Futures 2023, 2, 045102.

[30]

D. Cao, Y. Zhang, A. M. Nolan, X. Sun, C. Liu, J. Sheng, Y. Mo, Y. Wang, H. Zhu, Nano Lett. 2020, 20, 1483.

[31]

W. Zhang, D. A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schröder, R. Koerver, T. Leichtweiss, P. Hartmann, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2017, 9, 17835.

[32]

A. Mills, G. Yang, W.-Y. Tsai, X. C. Chen, R. L. Sacci, B. L. Armstrong, J. D. T. Hallinan, J. Nanda, J. Electrochem. Soc. 2023, 170, 080513.

[33]

K. B. Hatzell, X. C. Chen, C. L. Cobb, N. P. Dasgupta, M. B. Dixit, L. E. Marbella, M. T. McDowell, P. P. Mukherjee, A. Verma, V. Viswanathan, A. S. Westover, W. G. Zeier, ACS Energy Lett. 2020, 5, 922.

[34]

J. Park, S. Ahn, Mater. Lett. 2021, 297, 129994.

[35]

S. Luo, Z. Wang, X. Li, X. Liu, H. Wang, W. Ma, L. Zhang, L. Zhu, X. Zhang, Nat. Commun. 2021,

[36]

W. Jing, K. Zou, X. Dai, J. Sun, Q. Tan, Y. Chen, Y. Liu, J. Alloys Compd. 2022, 924, 166517.

[37]

M. Clausnitzer, M. Ihrig, L. Cressa, S. Hein, M. Finsterbusch, S. Eswara, L.-Y. Kuo, T. Danner, P. Kaghazchi, D. Fattakhova-Rohlfing, O. Guillon, A. Latz, Energy Storage Mater. 2024, 67, 103262.

[38]

P. Gupta, M. Streb, A. Siddiqui, M. Klett, G. Lindbergh, P. Gudmundson, Batteries 2023, 9, 575.

[39]

K. J. Park, H. G. Jung, L. Y. Kuo, P. Kaghazchi, C. S. Yoon, Y. K. Sun, Adv. Energy Mater. 2018, 8, 1801202.

[40]

P. Jehnichen, K. Wedlich, C. Korte, Sci. Technol. Adv. Mater. 2019,

[41]

M. Capó, A. Pérez, J. A. Lozano, Data Min. Knowl. Discov. 2020, 34, 776.

[42]

Y. Zhou, C. Doerrer, J. Kasemchainan, P. G. Bruce, M. Pasta, L. J. Hardwick, Batter. Supercaps 2020, 3, 647.

[43]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Mach. Learn. Res. 2011, 12, 2825.

[44]

G. Yang, R. Tao, C. J. Jafta, C. Shen, S. Zhao, L. He, I. Belharouak, J. Nanda, J. Phys. Chem. C 2021, 125, 13146.

[45]

K. G. Araño, G. Yang, B. L. Armstrong, T. Aytug, M. S. Chambers, E. C. Self, H. M. Meyer, J. Quinn, J. F. Browning, C. Wang, ACS Appl. Energy Mater. 2023, 6, 11308.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/