Suppressing Exciton–Vibration Coupling and Reducing Nonradiative Energy Loss in Conjugated Polymers Through Fluorine Substitution in Side Chains

Zezhou Liang , Lihe Yan , Xiaoming Li , Yufei Wang , Baofeng Zhao , Chao Gao , Jinhai Si , Hou Xun

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12856

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12856 DOI: 10.1002/eem2.12856
RESEARCH ARTICLE

Suppressing Exciton–Vibration Coupling and Reducing Nonradiative Energy Loss in Conjugated Polymers Through Fluorine Substitution in Side Chains

Author information +
History +
PDF

Abstract

Fluorine (F) substitution in polymers modulates both molecular energy levels and film morphology; however, its impact on exciton–vibrational coupling and molecular reorganization energy is often neglected. Herein, we systematically investigated F-modified polymers (PBTA-PSF, PBDB-PSF) and their nonfluorinated counterparts (PBTA-PS, PBDB-PS) through simulations and experiments. We found that F atoms effectively lower the vibrational frequency of the molecular skeleton and suppress exciton–vibration coupling, thereby reducing the nonradiative decay rate. Moreover, introducing F atoms significantly decreases the reorganization energy for the S0 → S1 and S0 → cation transitions while increasing the reorganization energy for the S1 → S0 and cation → S0 transitions. These changes facilitate exciton dissociation and reduce the energy loss caused by dissociation and nonradiative recombination of excitons. Additionally, introducing F atoms into polymers enhances the π–π stacking strength and the crystal coherence length in both neat and blended films, ultimately resulting in improvements in the power conversion efficiency of PBTA-PSF:L8-BO and PBDB-PSF:L8-BO are 16.51% and 17.59%, respectively. This study provides valuable insights for designing organic semiconductor materials to minimize energy loss and achieve a higher power conversion efficiency.

Keywords

exciton–vibration coupling / fluorine substitution / nonradiative decay rate / reorganization energy

Cite this article

Download citation ▾
Zezhou Liang, Lihe Yan, Xiaoming Li, Yufei Wang, Baofeng Zhao, Chao Gao, Jinhai Si, Hou Xun. Suppressing Exciton–Vibration Coupling and Reducing Nonradiative Energy Loss in Conjugated Polymers Through Fluorine Substitution in Side Chains. Energy & Environmental Materials, 2025, 8(3): e12856 DOI:10.1002/eem2.12856

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Wang, Y. Cui, Z. Chen, J. Zhang, Y. Xiao, T. Zhang, W. Wang, Y. Xu, N. Yang, H. Yao, X.-T. Hao, Z. Wei, J. Hou, J. Am. Chem. Soc. 2023, 145, 13686.

[2]

Z. Chen, J. Ge, W. Song, X. Tong, H. Liu, X. Yu, J. Li, J. Shi, L. Xie, C. Han, Q. Liu, Z. Ge, Adv. Mater. 2024, 36, 2406690.

[3]

H. Wang, S. Liu, H. Li, M. Li, X. Wu, S. Zhang, L. Ye, X. Hu, Y. Chen, Adv. Mater. 2024, 36, 2313098.

[4]

X. Li, A. Tang, H. Wang, Z. Wang, M. Du, Q. Guo, Q. Guo, E. Zhou, Angew. Chem. Int. Ed. 2023, 62, e202306847.

[5]

Z. Wang, X. Wang, L. Tu, H. Wang, M. Du, T. Dai, Q. Guo, Y. Shi, E. Zhou, Angew. Chem. Int. Ed. 2024, 136, e202319755.

[6]

Z. Wang, H. Wang, L. Yang, M. Du, L. Gao, Q. Guo, E. Zhou, Angew. Chem. Int. Ed. 2024, 136, e202404921.

[7]

P. Q. Bi, J. Q. Wang, Y. Cui, J. Q. Zhang, T. Zhang, Z. H. Chen, J. W. Qiao, J. B. Dai, S. Q. Zhang, X. T. Hao, Z. X. Wei, J. H. Hou, Adv. Mater. 2023, 35, 2210865.

[8]

T. Y. Chen, S. X. Li, Y. K. Li, Z. Chen, H. T. Wu, Y. Lin, Y. Gao, M. T. Wang, G. Y. Ding, J. Min, Z. F. Ma, H. M. Zhu, L. J. Zuo, H. Z. Chen, Adv. Mater. 2023, 35, 2300400.

[9]

S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, R. H. Friend, Science 2014, 343, 512.

[10]

J. S. Müller, M. Comí, F. Eisner, M. Azzouzi, D. Herrera Ruiz, J. Yan, S. S. Attar, M. Al-Hashimi, J. Nelson, ACS Energy Lett. 2023, 8, 3387.

[11]

L. Perdigón-Toro, L. Q. Phuong, S. Zeiske, K. Vandewal, A. Armin, S. Shoaee, D. Neher, ACS Energy Lett. 2021, 6, 557.

[12]

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, M. S. Skolnick, Science 2000, 288, 1620.

[13]

S. Giannini, W. T. Peng, L. Cupellini, D. Padula, A. Carof, J. Blumberger, Nat. Commun. 2022, 13, 2755.

[14]

Z. Sun, H. Ma, S. Yang, Y. Cho, S. Lee, J. Park, T. Mai, W. Kim, S. Jeong, S. Kim, C. Yang, Adv. Funct. Mater. 2024, 34, 2403093.

[15]

M. Jeong, I. Choi, E. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. Choi, J. Lee, J. Bae, S. Kwak, D. Kim, C. Yang, Science 2020, 369, 1615.

[16]

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. L. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, K. Vandewal, Nat. Energy 2017, 2, 17053.

[17]

A. Nitzan, S. Mukamel, J. Jortner, J. Chem. Phys. 1975, 63, 200.

[18]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, C. Lienau, Science 2014, 344, 1001.

[19]

S. Rafiq, B. Fu, B. Kudisch, G. D. Scholes, Nat. Chem. 2021, 13, 70.

[20]

A. J. Musser, M. Liebel, C. Schnedermann, T. Wende, T. B. Kehoe, A. Rao, P. Kukura, Nat. Phys. 2015, 11, 352.

[21]

Y. Zhu, D. He, C. Wang, X. Han, Z. Liu, K. Wang, J. Zhang, X. Shen, J. Li, Y. Lin, C. Wang, Y. He, F. Zhao, Angew. Chem. Int. Ed. 2024, 63, e202316227.

[22]

Y. Jiang, Y. Li, F. Liu, W. Wang, W. Su, W. Liu, S. Liu, W. Zhang, J. Hou, S. Xu, Y. Yi, X. Zhu, Nat. Commun. 2023, 14, 5079.

[23]

K. Zhang, Z. Jiang, J. Qiao, P. Lu, C. Qin, H. Yin, X. Du, W. Qin, X. Hao, Energy Environ. Sci. 2023, 16, 3350.

[24]

S. Yang, J. Park, S. Jeong, Y. Cho, M. Jeong, J. Oh, S. Lee, J. Park, S. Yoon, C. Yang, ACS Appl. Mater. Interfaces 2023, 15, 39636.

[25]

M. Wang, M. J. Ford, A. T. Lill, H. Phan, T.-Q. Nguyen, G. C. Bazan, Adv. Mater. 2017, 29, 1603830.

[26]

R. Zhao, Y. Min, C. Dou, J. Liu, L. Wang, Chem. A Eur. J. 2017, 23, 9486.

[27]

J. W. Jo, J. W. Jung, E. H. Jung, H. Ahn, T. J. Shin, W. H. Jo, Energ. Environ. Sci. 2015, 8, 2427.

[28]

T. Zhang, Z. Chen, W. Zhang, L. Wang, G. Yu, Adv. Mater. 2024, 36, 2403961.

[29]

X. Li, G. Huang, W. Chen, H. Jiang, S. Qiao, R. Yang, ACS Appl. Mater. Interfaces 2020, 12, 16670.

[30]

G. Huang, J. Zhang, N. Uranbileg, W. Chen, H. Jiang, H. Tan, W. Zhu, R. Yang, Adv. Energy Mater. 2017, 8, 1702489.

[31]

X. Li, Y. Li, Y. Zhang, Y. Sun, Small Sci. 2022, 2, 2200006.

[32]

W. Chen, H. Jiang, G. Huang, J. Zhang, M. Cai, X. Wan, R. Yang, Sol. RRL 2018, 2, 1800101.

[33]

X. Li, G. Huang, N. Zheng, Y. Li, X. Kang, S. Qiao, H. Jiang, W. Chen, R. Yang, Sol. RRL 2019, 3, 1900005.

[34]

Y. Cho, B. Lee, S. Jung, S. Jeong, J. Park, G. Park, S. Yang, C. Yang, Energy Environ. Sci. 2023, 16, 6035.

[35]

J. Lu, J. Wu, B. Huang, Y. Fang, X. Deng, J. Zhang, S. Chen, S. Jeong, J. Liu, C. Yang, Adv. Funct. Mater. 2024, 34, 2312545.

[36]

C. W. Zhong, D. Bialas, F. C. Spano, J. Phys. Chem. C 2020, 124, 2146.

[37]

T. Brixner, R. Hildner, J. Köhler, C. Lambert, F. Würthner, Adv. Energy Mater. 2017, 7, 1700236.

[38]

Z. Q. Liang, M. M. Li, Q. Wang, Y. P. Qin, S. J. Stuard, Z. X. Peng, Y. F. Deng, H. Ade, L. Ye, Y. H. Geng, Joule 2020, 4, 1278.

[39]

Y. Guo, G. Han, Y. Yi, Angew. Chem. Int. Ed. 2022, 61, 61.

[40]

Y. Shi, Y. Chang, K. Lu, Z. Chen, J. Zhang, Y. Yan, D. Qiu, Y. Liu, M. A. Adil, W. Ma, X. Hao, L. Zhu, Z. Wei, Nat. Commun. 2022, 13, 3256.

[41]

J. Q. Wang, Z. Zheng, D. Y. Zhang, J. Q. Zhang, J. Y. Zhou, J. C. Liu, S. K. Xie, Y. Zhao, Y. Zhang, Z. X. Wei, J. H. Hou, Z. Y. Tang, H. Q. Zhou, Adv. Mater. 2019, 31, 1806921.

[42]

H. Lu, H. Wang, G. Ran, S. Li, J. Zhang, Y. Liu, W. Zhang, X. Xu, Z. Bo, Adv. Funct. Mater. 2022, 32, 2203193.

[43]

H. Lu, D. Li, G. Ran, Y.-N. Chen, W. Liu, H. Wang, S. Li, X. Wang, W. Zhang, Y. Liu, X. Xu, Z. Bo, ACS Energy Lett. 2022, 7, 3927.

[44]

C. Zhang, S. Mahadevan, J. Yuan, J. K. W. Ho, Y. Gao, W. Liu, H. Zhong, H. Yan, Y. Zou, S.-W. Tsang, S. K. So, ACS Energy Lett. 2022, 7, 1971.

[45]

Z. Liang, L. Yan, N. Wang, J. Si, S. Liu, Y. Wang, J. Tong, J. Li, B. Zhao, C. Gao, X. Hou, Adv. Funct. Mater. 2023, 34, 2310312.

[46]

L. Yan, Z. Liang, J. Si, P. Gong, Y. Wang, X. Liu, J. Tong, J. Li, X. Hou, ACS Appl. Mater. Interfaces 2022, 14, 6945.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/