Lithium Storage Mechanisms and Electrochemical Behavior of a Molybdenum Disulfide Nanoparticle Anode

Xintong Li , Wei Hao , Hua Wang , Tianyi Li , Dimitrios Trikkaliotis , Xinwei Zhou , Dewen Hou , Kai Chang , Ahmed M. Hashem , Yuzi Liu , Zhenzhen Yang , Saichao Cao , Gyeong Hwang , George Z. Kyzas , Shengfeng Yang , C. Buddie Mullins , Christian M. Julien , Likun Zhu

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12855

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12855 DOI: 10.1002/eem2.12855
RESEARCH ARTICLE

Lithium Storage Mechanisms and Electrochemical Behavior of a Molybdenum Disulfide Nanoparticle Anode

Author information +
History +
PDF

Abstract

This study investigates the electrochemical behavior of molybdenum disulfide (MoS2) as an anode in Li-ion batteries, focusing on the extra capacity phenomenon. Employing advanced characterization methods such as in situ and ex situ X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, the research unravels the complex structural and chemical evolution of MoS2 throughout its cycling. A key discovery is the identification of a unique Li intercalation mechanism in MoS2, leading to the formation of reversible LixMoS2 phases that contribute to the extra capacity of the MoS2 electrode. Density function theory calculations suggest the potential for overlithiation in MoS2, predicting Li5MoS2 as the most energetically favorable phase within the lithiation–delithiation process. Additionally, the formation of a Li-rich phase on the surface of Li4MoS2 is considered energetically advantageous. After the first discharge, the battery system engages in two main reactions. One involves operation as a Li-sulfur battery within the carbonate electrolyte, and the other is the reversible intercalation and deintercalation of Li in LixMoS2. The latter reaction contributes to the extra capacity of the battery. The incorporation of reduced graphene oxide as a conductive additive in MoS2 electrodes notably improves their rate capability and cycling stability.

Keywords

extra capacity / lithium-ion battery / lithium-rich phase / molybdenum disulfide / reduced graphene oxide

Cite this article

Download citation ▾
Xintong Li, Wei Hao, Hua Wang, Tianyi Li, Dimitrios Trikkaliotis, Xinwei Zhou, Dewen Hou, Kai Chang, Ahmed M. Hashem, Yuzi Liu, Zhenzhen Yang, Saichao Cao, Gyeong Hwang, George Z. Kyzas, Shengfeng Yang, C. Buddie Mullins, Christian M. Julien, Likun Zhu. Lithium Storage Mechanisms and Electrochemical Behavior of a Molybdenum Disulfide Nanoparticle Anode. Energy & Environmental Materials, 2025, 8(3): e12855 DOI:10.1002/eem2.12855

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Zhao, Elucidating Interface Reactions Coupled with Materials Degradation Mechanisms in Li-Ion Batteries and Their Remedy by Electrolyte Additives, University of Macau, Taipa 2022.

[2]

J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, Sustain. Energy Fuels 2020, 4, 5387.

[3]

R. C. Massé, C. Liu, Y. Li, L. Mai, G. Cao, Natl. Sci. Rev. 2016, 4, 26.

[4]

R. E. Doe, K. A. Persson, Y. S. Meng, G. Ceder, Chem. Mater. 2008, 20, 5274.

[5]

B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater. 2010, 22, 691.

[6]

Y. Sun, X. Hu, W. Luo, Y. Huang, J. Mater. Chem. 2012, 22, 19190.

[7]

W. Zhang, M. Li, Q. Wang, G. Chen, M. Kong, Z. Yang, S. Mann, Adv. Funct. Mater. 2011, 21, 3516.

[8]

Y. Chen, B. Song, X. Tang, L. Lu, J. Xue, J. Mater. Chem. 2012, 22, 17656.

[9]

S. Jin, H. Deng, D. Long, X. Liu, L. Zhan, X. Liang, W. Qiao, L. Ling, J. Power Sources 2011, 196, 3887.

[10]

S. Yuan, J. Li, L. Yang, L. Su, L. Liu, Z. Zhou, ACS Appl. Mater. Interfaces 2011, 3, 705.

[11]

L. Su, Y. Zhong, Z. Zhou, J. Mater. Chem. A 2013, 1, 15158.

[12]

P. U. Nzereogu, A. D. Omah, F. I. Ezema, E. I. Iwuoha, A. C. Nwanya, Appl. Surf. Sci. Adv. 2022, 9, 20.

[13]

C.-H. Lai, M.-Y. Lu, L.-J. Chen, J. Mater. Chem. 2012, 22, 19.

[14]

Q. Li, J. Newberg, E. Walter, J. Hemminger, R. Penner, Nano Lett. 2004, 4, 277.

[15]

Z. Wang, Y. Liu, F. Li, J. Zhao, Phys. Chem. Chem. Phys. 2021, 23, 20107.

[16]

A. Kuc, T. Heine, Chem. Soc. Rev. 2015, 44, 2603.

[17]

B. Ouyang, S. Y. Xiong, Z. Yang, Y. H. Jing, Y. J. Wang, Nanoscale 2017, 9, 8126.

[18]

G. D. Du, Z. P. Guo, S. Q. Wang, R. Zeng, Z. X. Chen, H. K. Liu, Chem. Commun. 2010, 46, 1106.

[19]

M. Ihsan, H. Wang, S. R. Majid, J. Yang, S. J. Kennedy, Z. Guo, H. K. Liu, Carbon 2016, 96, 1200.

[20]

Y. Chen, M. Sun, Nanoscale 2021, 13, 5594.

[21]

M. Maqsood, S. Afzal, A. Shakoor, N. A. Niaz, A. Majid, N. Hassan, H. Kanwal, J. Mater. Sci. Mater. Electron. 2018, 29, 16080.

[22]

M. I. A. Abdel Maksoud, A. G. Bedir, B. Mohamad, M. M. Abouelela, F. R. Amer, A. Awed, S. Y. Attia, S. M. Kassem, E. M. Abd, S. G. Mohamed, Environ. Chem. Lett. 2021, 19, 3645.

[23]

X. Jia, X. Zhu, W. Tian, Y. Ding, X. Tian, B. Cheng, L. Cheng, S. Bai, Y. Qin, J. Mater. Chem. C 2020, 8, 4133.

[24]

D. Wang, J. Bai, M. Hao, J. Liang, B. Fang, Y. Wang, K. Cui, F. Wang, CrstEngComm 2022, 24, 6498.

[25]

T. Wang, X. Zhang, P. Yang, Inorg. Chem. Front. 2020, 7, 3578.

[26]

S. Prabhakar Vattikuti, C. Byon, C. Venkata Reddy, B. Venkatesh, J. Shim, J. Mater. Sci. 2015, 50, 5024.

[27]

S. J. Ding, J. S. Chen, X. W. Lou, Chemistry 2011, 17, 13142.

[28]

C. Q. Feng, J. Ma, H. Li, R. Zeng, Z. P. Guo, H. K. Liu, Mater. Res. Bull. 2009, 44, 1811.

[29]

L. Zhang, D. Sun, J. Kang, J. Feng, H. A. Bechtel, L. W. Wang, E. J. Cairns, J. H. Guo, Nano Lett. 2018, 18, 1466.

[30]

L. L. Wang, Q. F. Zhang, J. Y. Zhu, X. D. Duan, Z. Xu, Y. T. Liu, H. G. Yang, B. A. Lu, Energy Storage Mater. 2019, 16, 37.

[31]

X. P. Fang, C. X. Hua, X. W. Guo, Y. S. Hu, Z. X. Wang, X. P. Gao, F. Wu, J. Z. Wang, L. Q. Chen, Electrochim. Acta 2012, 81, 155.

[32]

H. Li, W. J. Li, L. Ma, W. X. Chen, J. M. Wang, J. Alloys Compd. 2009, 471, 442.

[33]

Q. Pan, H. Jin, H. Wang, G. Yin, Electrochim. Acta 2007, 53, 951.

[34]

L. Xu, Y.-S. Ding, C.-H. Chen, L. Zhao, C. Rimkus, R. Joesten, S. L. Suib, Chem. Mater. 2008, 20, 308.

[35]

H. Wang, W. Hao, T. Li, X. Li, K. Chang, X. Zhou, D. Hou, A. M. Hashem, G. S. Hwang, Y. Liu, J. Mater. Chem. A 2023, 11, 23012.

[36]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[37]

T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Energy Environ. Sci. 2014, 7, 209.

[38]

C. Xing, H. Chen, S. S. Qian, Z. Z. Wu, A. Nizami, X. Li, S. Q. Zhang, C. Lai, Chem 2022, 8, 1201.

[39]

Q. Wang, J. Li, J. Phys. Chem. C 2007, 111, 1675.

[40]

X. P. Fang, X. W. Guo, Y. Mao, C. X. Hua, L. Y. Shen, Y. S. Hu, Z. X. Wang, F. Wu, L. Q. Chen, Chemistry 2012, 7, 1013.

[41]

Y. M. Sun, H. W. Lee, Z. W. Seh, G. Y. Zheng, J. Sun, Y. B. Li, Y. Cui, Adv. Energy Mater. 2016, 6, 1600154.

[42]

D. Blanchard, M. Slagter, J. Phys. Energy 2021, 3, 044003.

[43]

P. Partovi-Azar, T. D. Kühne, P. Kaghazchi, Phys. Chem. Chem. Phys. 2015, 17, 22009.

[44]

Y. Z. Wang, X. Y. Shan, D. W. Wang, Z. H. Sun, H. M. Cheng, F. Li, Joule 2018, 2, 1278.

[45]

H. M. Wang, H. Yuan, W. W. Wang, X. Y. Wang, J. G. Sun, J. Yang, X. M. Liu, Q. Zhao, T. Wang, N. Wen, Y. L. Gao, K. P. Song, D. R. Chen, S. J. Wang, Y. W. Zhang, J. H. Wang, Adv. Mater. 2024, 36, e2307741.

[46]

X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, U. Lemmer, Opt. Express 2013, 21, 28941.

[47]

A. Oren, L. Mana, J. Jehlička, FEMS Microbiol. Lett. 2015, 362, fnv021.

[48]

J. D. Pasteris, J. J. Freeman, S. K. Goffredi, K. R. Buck, Chem. Geol. 2001, 180, 3.

[49]

Y. L. Lin, Y. C. Zhou, S. Huang, M. Xiao, D. M. Han, J. X. Qin, S. J. Wang, Y. Z. Meng, Adv. Energy Mater. 2022, 12, 2201912.

[50]

G. H. Zhu, J. Liu, Q. Y. Zheng, R. G. Zhang, D. Y. Li, D. Banerjee, D. G. Cahill, Nat. Commun. 2016, 7, 13211.

[51]

M. Xie, Z. R. Lv, W. Zhao, Y. Q. Fang, J. Huang, F. Q. Huang, Chem. Eng. J. 2023, 470, 144282.

[52]

C. Julien, T. Sekine, M. Balkanski, Solid State Ion. 1991, 48, 225.

[53]

S. M. Elgengehi, S. El-Taher, M. A. Ibrahim, J. K. Desmarais, K. E. El-Kelany, Appl. Surf. Sci. 2020, 507, 145038.

[54]

S. Wang, Y. Dong, C. He, Y. Gao, N. Jia, Z. Chen, W. Song, RSC Adv. 2017, 7, 53643.

[55]

C. Prescher, V. B. Prakapenka, High Pressure Res. 2015, 35, 223.

[56]

P. Juhás, T. Davis, C. L. Farrow, S. J. L. Billinge, J. Appl. Cryst. 2013, 46, 560.

[57]

G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.

[58]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[59]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[60]

P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[61]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

[62]

W. Hao, M. Lee, G. S. Hwang, J. Power Sources 2023, 560, 232689.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/