Highly Efficient and Stable Capacitive Deionization Based on a Flower-Like Conjugated Polymer with Double Active-Sites

Zhiyun Zhuang , Lei Sun , Yueheng Tao , Jian Shao , Jinggang Yang , Peng Yu , Huanxu Chen , Jianhua Zhou , Jing Xiao , Kangyong Yin , Minjie Shi , Peng Xiao

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12852

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12852 DOI: 10.1002/eem2.12852
RESEARCH ARTICLE

Highly Efficient and Stable Capacitive Deionization Based on a Flower-Like Conjugated Polymer with Double Active-Sites

Author information +
History +
PDF

Abstract

Hybrid capacitive deionization (HCDI) shows promise for desalinating brackish and saline water by utilizing the pseudocapacitive properties of faradaic electrodes. Organic materials, with their low environmental impact and adaptable structures, are attractive for this application. However, their scarcity of active sites and tendency to dissolve in water-based solutions remain significant challenges. Herein, we synthesized a polynaphthalenequinoneimine (PCON) polymer with stable long-range ordered framework and rough three-dimensional floral surface morphology, along with high-density active sites provided by C=O and C=N functional groups, enabling efficient redox reactions and achieving a high Na+ capture capability. The synthesized PCON polymer showcases outstanding electroadsorption characteristics and notable structural robustness, attaining an impressive specific capacitance of 500.45 F g–1 at 1 A g–1 and maintaining 86.1% of its original capacitance following 5000 charge–discharge cycles. Benefiting from the superior pseudocapacitive properties of the PCON polymer, we have developed an HCDI system that not only exhibits exceptional salt removal capacity of 100.8 mg g–1 and a remarkable rapid average removal rate of 3.36 mg g–1 min–1 but also maintains 97% of its initial desalination capacity after 50 cycles, thereby distinguishing itself in the field of state-of-the-art desalination technologies with its comprehensive performance that significantly surpasses reported organic capacitive deionization materials. Prospectively, the synthesis paradigm of the double active-sites PCON polymer may be extrapolated to other organic electrodes, heralding new avenues for the design of high-performance desalination systems.

Keywords

capacitive deionization / electro-adsorption / Na+ removal / organic compound / pseudocapacitive electrode

Cite this article

Download citation ▾
Zhiyun Zhuang, Lei Sun, Yueheng Tao, Jian Shao, Jinggang Yang, Peng Yu, Huanxu Chen, Jianhua Zhou, Jing Xiao, Kangyong Yin, Minjie Shi, Peng Xiao. Highly Efficient and Stable Capacitive Deionization Based on a Flower-Like Conjugated Polymer with Double Active-Sites. Energy & Environmental Materials, 2025, 8(3): e12852 DOI:10.1002/eem2.12852

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Scanlon, S. Fakhreddine, A. Rateb, I. de Graaf, J. Famiglietti, T. Gleeson, R. Grafton, E. Jobbagy, S. Kebede, S. Kolusu, L. Konikow, D. Long, M. Mekonnen, H. Schmied, A. Mukherjee, A. MacDonald, R. Reedy, M. Shamsudduha, C. Simmons, A. Sun, R. Taylor, K. Villholth, C. Vörösmarty, C. Zheng, Nat. Rev. Earth Environ. 2023, 4, 351.

[2]

S. Kumar, N. Aldaqqa, E. Alhseinat, D. Shetty, Angew. Chem. Int. Ed. Engl. 2023, 62, e202302180.

[3]

G. Zeng, B. Ling, Z. Li, S. Luo, X. Sui, Q. Guan, J. Hazard. Mater. 2019, 373, 313.

[4]

K. Elsaid, E. Sayed, M. Abdelkareem, A. Baroutaji, A. Olabi, Sci. Total Environ. 2020, 740, 140125.

[5]

S. Dong, Y. Wang, Water Res. 2016, 88, 852.

[6]

K. Sun, M. Tebyetekerwa, C. Wang, X. Wang, X. Zhang, X. Zhao, Adv. Funct. Mater. 2023, 33, 2213578.

[7]

S. Dahiya, A. Singh, B. Mishra, Chem. Eng. J. 2021, 417, 128129.

[8]

S. Wang, H. Zhuang, X. Shen, L. Zhao, Z. Pan, L. Liu, S. Lv, G. Wang, J. Hazard. Mater. 2023, 457, 131785.

[9]

C. Zhang, M. Wang, W. Xiao, J. Ma, J. Sun, H. Mo, T. Waite, Water Res. 2021, 189, 116653.

[10]

Z. Gan, J. Yin, X. Xu, Y. Cheng, T. Yu, ACS Nano 2022, 16, 5131.

[11]

M. Khan, Z. Leong, D. Li, J. Qiu, X. Xu, H. Yang, Nanoscale 2023, 15, 15929.

[12]

M. Tauk, M. Bechelany, P. Sistat, R. Habchi, M. Cretin, F. Zaviska, Desalination 2024, 582, 117660.

[13]

K. Laxman, D. Kimoto, A. Sahakyan, J. Dutta, ACS Appl. Mater. Interfaces 2018, 10, 5941.

[14]

Y. Zhang, Q. Zhang, L. Wang, L. Dong, Y. Xie, Y. Hao, X. He, Ionics 2023, 29, 4407.

[15]

X. Yu, S. Yun, J. S. Yeon, P. Bhattacharya, L. Wang, S. W. Lee, X. Hu, H. S. Park, Adv. Energy Mater. 2018, 8, 1702930.

[16]

K. Wang, Y. Liu, X. Xu, Y. Jiao, L. Pan, Chem. Eng. J. 2023, 463, 142394.

[17]

H. Deng, W. Wei, L. Yao, Z. Zheng, B. Li, A. Abdelkader, L. Deng, Adv. Sci. 2022, 9, 2203189.

[18]

Y. Lei, S. Wang, L. Zhao, C. Li, G. Wang, J. Qiu, Adv. Sci. 2024, 11, 2402340.

[19]

J. Jin, W. Xi, Z. Li, J. Hu, R. Wang, Y. Gong, B. He, H. Wang, Y. Zhang, Desalination 2024, 578, 117468.

[20]

S. Cao, T. Chen, S. Zheng, Y. Bai, H. Pang, Small Methods 2021, 5, 2101070.

[21]

M. Tauk, G. Folaranmi, M. Cretin, M. Bechelany, P. Sistat, C. Zhang, F. Zaviska, J. Environ. Chem. Eng. 2023, 11, 111368.

[22]

W. Li, C. Cui, Q. Wei, H. Chand, A. Wang, N. Pismenskaya, C. Zhang, Chem. Eng. J. 2024, 484, 149657.

[23]

J. Lei, X. Zhang, J. Wang, F. Yu, M. Liang, X. Wang, Z. Bi, G. Shang, H. Xie, J. Ma, Angew. Chem. Int. Ed. Engl. 2024, 63, e202401972.

[24]

W. Xing, K. Luo, J. Liang, C. Su, W. Tang, Chem. Eng. J. 2023, 477, 147268.

[25]

J. Zhao, B. Wu, X. Huang, Y. Sun, Z. Zhao, M. Ye, X. Wen, Adv. Sci. 2022, 9, 2201678.

[26]

R. Alfahel, Y. Tong, M. Pasha, A. Hawari, K. Mahmoud, Desalination 2024, 573, 117187.

[27]

N. Tran, J. Moon, J. Kim, J. Park, Y. Cho, Sep. Purif. Technol. 2023, 324, 124519.

[28]

Y. Li, Z. Ding, J. Li, K. Wang, T. Lu, L. Pan, Desalination 2020, 481, 114379.

[29]

L. Xu, Y. Liu, X. Xuan, X. Xu, Y. Li, T. Lu, L. Pan, Mater. Horiz. 2024, 11, 2974.

[30]

S. Wang, L. Zhao, Y. Lei, Z. Li, G. Wang, Sep. Purif. Technol. 2024, 329, 125204.

[31]

J. Weng, S. Wang, P. Zhang, C. Li, G. Wang, New Carbon Mater. 2021, 36, 117.

[32]

L. Xu, Y. Liu, Z. Ding, X. Xu, X. Liu, Z. Gong, J. Li, T. Lu, L. Pan, Small 2024, 20, 2307843.

[33]

J. Jin, R. Wang, K. Yu, Y. Tao, P. Zhang, L. Ke, J. Yang, M. Shi, Sep. Purif. Technol. 2025, 353, 128290.

[34]

D. Ma, S. Yan, X. Xue, M. Niu, H. Li, D. Bao, C. Zhao, X. Li, P. Wang, R. Li, L. Huang, M. Yu, S. Jia, Y. Wang, X. Li, Z. Zhang, T. Wang, Sep. Purif. Technol. 2024, 339, 126728.

[35]

J. Yi, N. Al-Dhabi, T. Hu, T. Soyol-Erdene, O. Bayanjargal, E. Liu, W. Tang, Chem. Eng. J. 2024, 492, 152447.

[36]

J. Zhang, D. Wang, F. Zhao, J. Feng, H. Feng, J. Luo, W. Tang, Water Res. 2022, 227, 119324.

[37]

G. Pickett, J. Am. Chem. Soc. 1945, 67, 1958.

[38]

E. Stöckel, X. Wu, A. Trewin, C. Wood, R. Clowes, N. Campbell, J. Jones, Y. Khimyak, D. Adams, A. Cooper, Chem. Commun. 2009, 2, 212.

[39]

C. Ren, L. Cai, C. Chen, B. Tan, Y. Zhang, J. Zhang, J. Mater. Chem. A 2014, 2, 9015.

[40]

R. Wang, J. He, C. Yan, R. Jing, Y. Zhao, J. Yang, M. Shi, X. Yan, Adv. Mater. 2024, 36, 2402681.

[41]

V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.

[42]

Z. Chen, X. Xu, K. Wang, D. Jiang, F. Meng, T. Lu, Y. Yamauchi, L. Pan, Sep. Purif. Technol. 2023, 315, 123628.

[43]

W. Van Den Bergh, H. N. Lokupitiya, N. A. Vest, B. Reid, S. Guldin, M. Stefik, Adv. Funct. Mater. 2021, 31, 2007826.

[44]

S. Huang, C. Meng, M. Xiao, S. Ren, S. Wang, D. Han, L. Sun, Y. Meng, Nano Energy 2019, 61, 462.

[45]

J. Zheng, Y. Zhang, C. Meng, X. Wang, C. Liu, M. Bo, X. Pei, Y. Wei, T. Lv, G. Cao, Electrochim. Acta 2019, 318, 635.

[46]

T. Hu, L. Tang, H. Feng, J. Zhang, X. Li, Y. Zuo, Z. Lu, W. Tang, Coord. Chem. Rev. 2022, 451, 214277.

[47]

S. Zhou, H. Fan, F. He, Z. Fu, G. Gao, S. Zhang, X. Hu, J. Energy Storage 2022, 52, 104832.

[48]

M. Zhao, Z. Lian, Z. Long, B. Fu, R. Gao, S. Li, Y.-N. Zhou, Y. Song, Appl. Surf. Sci. 2019, 481, 1352.

[49]

D. Yan, A.-H. Lu, Z.-Y. Chen, L. He, W.-C. Li, ACS Appl. Energy Mater. 2021, 4, 1824.

[50]

M. Pradhan, R. Chakraborty, S. Rudra, S. Koley, P. K. Maji, A. K. Nayak, S. Das, U. Nandi, Electrochim. Acta 2021, 367, 137531.

[51]

M. K. Lima-Tenório, C. S. Ferreira, Q. H. F. Rebelo, R. F. B. D. Souza, R. R. Passos, E. A. G. Pineda, L. A. Pocrifka, Mater. Res. 2018, 21, e20170521.

[52]

F. Lu, W. Kong, K. Su, P. Xia, Y. Xue, X. Zeng, X. Wang, M. Zhou, Chem. Eng. Sci. 2023, 265, 118232.

[53]

H. Zhang, X. Li, C. Xiao, J. Xie, X. Yan, C. Wang, Y. Zhou, J. Qi, Z. Zhu, X. Sun, J. Li, Sep. Purif. Technol. 2022, 302, 122147.

[54]

A. Bryan, L. Santino, Y. Lu, S. Acharya, J. D'Arcy, Chem. Mater. 2016, 28, 5989.

[55]

Z. Chen, X. Xu, Y. Liu, J. Li, K. Wang, Z. Ding, F. Meng, T. Lu, L. Pan, Desalination 2022, 528, 115616.

[56]

J. Guo, X. Xu, J. Hill, L. Wang, J. Dang, Y. Kang, Y. Li, W. Guan, Y. Yamauchi, Chem. Sci. 2021, 12, 10334.

[57]

B. Li, Q. Cao, Y. Liu, Y. Sun, X. Ma, X. Duan, C. Chen, Y. Wang, J. Mater. Chem. A 2022, 10, 24905.

[58]

Y. Li, Z. Ding, J. Li, J. Li, T. Lu, L. Pan, Desalination 2019, 469, 114098.

[59]

H. Liu, J. Zhang, X. Xu, Q. Wang, Eur. J. 2020, 26, 4403.

[60]

V. Wadi, Y. Ibrahim, A. Arangadi, A. Kilybay, M. Mavukkandy, E. Alhseinat, S. Hasan, J. Electroanal. Chem. 2022, 914, 116318.

[61]

L. Zhang, Y. Cai, R. Fang, Y. Wang, S. Xu, Sep. Purif. Technol. 2024, 337, 126362.

[62]

N. Arora, F. Banat, G. Bharath, E. Alhseinat, J. Phys. D. Appl. Phys. 2019, 52, 455304.

[63]

J. Lee, S. Kim, C. Kim, J. Yoon, Energy Environ. Sci. 2014, 7, 3683.

[64]

S. Wang, Y. Lei, C. Li, L. Zhao, S. Du, G. Wang, J. S. Qiu, Small Struct. 2024, 5, 2400163.

[65]

N. Chen, J. He, H. Xuan, J. Jin, K. Yu, M. Shi, C. Yan, Compos. Part B 2024, 270, 111145.

[66]

T. Dong, W. Yi, T. Deng, T. Qin, X. Chu, H. Yang, L. Zheng, S. J. Yoo, J. Kim, Z. Wang, Y. Wang, W. Zhang, W. Zheng, Energy Environ. Mater. 2023, 6, e12262.

[67]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[68]

S. Eris, H. Bashiri, Prog. React. Kinet. Mech. 2016, 41, 109.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/