A Comprehensive Evaluation Framework for Lithium Iron Phosphate Cathode Relithiation Techniques: Balancing Production Costs, Electrochemical Performance, and Environmental Impact

Evgenii Beletskii , Alexey Volkov , Elizaveta Evshchik , Valery Kolmakov , Anna Shikhovtseva , Valentin Romanovski

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12850

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12850 DOI: 10.1002/eem2.12850
RESEARCH ARTICLE

A Comprehensive Evaluation Framework for Lithium Iron Phosphate Cathode Relithiation Techniques: Balancing Production Costs, Electrochemical Performance, and Environmental Impact

Author information +
History +
PDF

Abstract

Lithium iron phosphate (LFP) has found many applications in the field of electric vehicles and energy storage systems. However, the increasing volume of end-of-life LFP batteries poses an urgent challenge in terms of environmental sustainability and resource management. Therefore, the development and implementation of efficient LFP battery recycling methods are crucial to address these challenges. This article presents a novel, comprehensive evaluation framework for comparing different lithium iron phosphate relithiation techniques. The framework includes three main sets of criteria: direct production cost, electrochemical performance, and environmental impact. Each criterion is scored on a scale of 0–100, with higher scores indicating better performance. The direct production cost is rated based on material costs, energy consumption, key equipment costs, process duration and space requirements. Electrochemical performance is assessed by rate capability and cycle stability. Environmental impact is assessed based on CO2 emissions. The framework provides a standardized technique for researchers and industry professionals to objectively compare relithiation methods, facilitating the identification of the most promising approaches for further development and scale-up. The total average score across the three criterion groups for electrochemical, chemical, and hydrothermal relithiation methods was approximately 60 points, while sintering scored 39 points, making it the least attractive relithiation technique. Combining approaches outlined in publications with scores exceeding 60, a relithiation scheme was proposed to achieve optimal electrochemical performance with minimal resource consumption and environmental impact. The results demonstrate the framework's applicability and highlight areas for future research and optimization in lithium iron phosphate cathode recycling.

Keywords

battery recycling / environmental impact / lithium iron phosphate battery / relithiation / techno-economic analysis

Cite this article

Download citation ▾
Evgenii Beletskii, Alexey Volkov, Elizaveta Evshchik, Valery Kolmakov, Anna Shikhovtseva, Valentin Romanovski. A Comprehensive Evaluation Framework for Lithium Iron Phosphate Cathode Relithiation Techniques: Balancing Production Costs, Electrochemical Performance, and Environmental Impact. Energy & Environmental Materials, 2025, 8(3): e12850 DOI:10.1002/eem2.12850

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Chem. Rev. 2020, 120, 7020.

[2]

M. G. Fischer, X. Hua, B. D. Wilts, E. Castillo-Martínez, U. Steiner, ACS Appl. Mater. Interfaces 2018, 10, 1646.

[3]

B. Swain, Sep. Purif. Technol. 2017, 172, 388.

[4]

Z. Dobó, T. Dinh, T. Kulcsár, Energy Rep. 2023, 9, 6362.

[5]

H. Zhou, D. Zhang, Y. Jiang, B. Zeng, C. Zhao, M. Zhang, B. Zeng, X. Zhu, X. Su, V. Romanovski, R. Bi, Environ. Sci. Pollut. Res. 2023, 30, 114327.

[6]

E. V. Beletskii, V. Romanovski, J. Power Sources 2024, 624, 235576.

[7]

I. Matsukevich, A. Kulak, V. Palkhouskaya, V. Romanovski, J. H. Jo, Y. Aniskevich, S. G. Mohamed, J. Chem. Technol. Biotechnol. 2022, 97, 1021.

[8]

I. V. Matsukevich, A. I. Kulak, V. I. Popkov, V. I. Romanovski, M. G. Fayed, S. G. Mohamed, Inorg. Mater. 2022, 58, 160.

[9]

M. Nuriev, M. Lapteva, E3S Web Conf. 2024, 541, 02003.

[10]

Q. Liang, H. Yue, S. Wang, S. Yang, K. Lam, X. Hou, Electrochim. Acta 2020, 330, 135323.

[11]

Y. Yang, Z. Liu, J. Zhang, Y. Chen, C. Wang, J. Alloys Compd. 2023, 947, 169660.

[12]

Z. Liu, C. Zhang, M. Ye, H. Li, Z. Fu, H. Zhang, G. Wang, Y. Zhang, ACS Appl. Energy Mater. 2022, 5, 14323.

[13]

K. Y. Park, I. Park, H. Kim, H.-d. Lim, J. Hong, J. Kim, K. Kang, Chem. Mater. 2014, 26, 5345.

[14]

L. Zhang, Z. Xu, Z. He, ACS Sustain. Chem. Eng. 2020, 8, 11596.

[15]

F. Larouche, K. Amouzegar, A. Vijh, G. P. Demopoulos, J. Power Sources 2023,

[16]

T. Wang, X. Yu, M. Fan, Q. Meng, Y. Xiao, Y. X. Yin, H. Li, Y. G. Guo, Chem. Commun. 2020, 56, 245.

[17]

M. Fan, Q. Meng, X. Chang, C.-F. Gu, X.-H. Meng, Y.-X. Yin, H. Li, L.-J. Wan, Y.-G. Guo, Adv. Energy Mater. 2022, 12, 2103630.

[18]

C. Wu, J. Hu, L. Ye, Z. Su, X. Fang, X. Zhu, L. Zhuang, X. Ai, H. Yang, J. Qian, ACS Sustain. Chem. Eng. 2021, 9, 16384.

[19]

T. Ouaneche, M. Courty, L. Stievano, L. Monconduit, C. Guéry, M. T. Sougrati, N. Recham, J. Power Sources 2023, 579, 233248.

[20]

M. Cao, Z. Liu, X. Zhang, L. Yang, S. Xu, S. Weng, S. Zhang, X. Li, Y. Li, T. Liu, Y. Gao, X. Wang, Z. Wang, L. Chen, Adv. Funct. Mater. 2023, 33, 2210032.

[21]

P. Liu, Y. Zhang, P. Dong, Y. Zhang, Q. Meng, S. Zhou, X. Yang, M. Zhang, X. Yang, J. Alloys Compd. 2021, 860, 157909.

[22]

S. H. Zheng, X. T. Wang, Z. Y. Gu, H.-Y. , X.-Y. Zhang, J.-M. Cao, J.-Z. Guo, X.-T. Deng, Z.-T. Wu, R.-H. Zeng, X.-L. Wu, J. Power Sources 2023, 587, 233697.

[23]

X. Tang, R. Wang, Y. Ren, J. Duan, J. Li, P. Li, J. Mater. Sci. 2020, 55, 13036.

[24]

P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang, M. Li, Y. Chen, K. An, Y. S. Meng, P. Liu, Y. Li, J. S. Spangenberger, L. Gaines, J. Lu, Z. Chen, Joule 2020, 4, 2609.

[25]

H. Ahmad, K. T. Kubra, A. Butt, U. Nisar, F. J. Iftikhar, G. Ali, J. Power Sources 2023, 581, 233518.

[26]

J. Chen, G. Adit, L. Li, Y. Zhang, D. H. C. Chua, P. S. Lee, Energy Environ. Mater. 2023, 6, e12633.

[27]

L. Wu, H. Fu, W. Lyu, L. Cha, A. M. Rao, K. Guo, J. Zhou, S. Wen, B. Lu, ACS Nano 2024, 18, 13415.

[28]

J. Chen, A. M. Rao, C. Gao, J. Zhou, L. Cha, X. Yuan, B. Lu, Nano Res. 2024, 17, 9671.

[29]

M. Ma, S. Chong, K. Yao, H. K. Liu, S. X. Dou, W. Huang, Matter 2023, 6, 3220.

[30]

J. Kim, Y. Kim, J. Yoo, G. Kwon, Y. Ko, K. Kang, Nat. Rev. Mater. 2022, 8, 54.

[31]

H. Lyu, X. G. Sun, S. Dai, Adv. Energy Sustain. Res. 2021, 2, 2000044.

[32]

Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du, C. Li, T. Li, F. Kang, N. Tavajohi, B. Li, Nat. Rev. Mater. 2023, 8, 623.

[33]

T. Liu, Y. Zhang, C. Chen, Z. Lin, S. Zhang, J. Lu, Nat. Commun. 2019, 10, 1965.

[34]

Y. Li, R. A. Adams, A. Arora, V. G. Pol, A. M. Levine, R. J. Lee, K. Akato, A. K. Naskar, M. P. Paranthaman, J. Electrochem. Soc. 2017, 164, A1234.

[35]

X. Zhang, F. Wu, X. Lv, L. Xu, R. Huang, R. Chen, L. Li, Adv. Mater. 2022, 34, e2204370.

[36]

Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang, Y. Xia, Angew. Chem. 2018, 130, 11911.

[37]

A. V. Mumyatov, A. F. Shestakov, N. N. Dremova, K. J. Stevenson, P. A. Troshin, Energ. Technol. 2019, 7, 1801016.

[38]

G. Ji, J. Wang, Z. Liang, K. Jia, J. Ma, Z. Zhuang, G. Zhou, H. M. Cheng, Nat. Commun. 2023, 14, 584.

[39]

D. Thompson, C. Hyde, J. M. Hartley, A. P. Abbott, P. A. Anderson, G. D. J. Harper, Resour. Conserv. Recycl. 2021, 175, 105741.

[40]

S. Zhou, J. Du, X. Xiong, L. Liu, J. Wang, L. Fu, J. Ye, Y. Chen, Y. Wu, Green Chem. 2022, 24, 6278.

[41]

N. Ogihara, K. Nagaya, H. Yamaguchi, Y. Kondo, Y. Yamada, T. Horiba, T. Baba, N. Ohba, S. Komagata, Y. Aoki, H. Kondo, T. Sasaki, S. Okayama, Joule 2024, 8, 1364.

[42]

X. Qiu, C. Wang, L. Xie, L. Zhu, X. Cao, X. Ji, J. Power Sources 2024, 602, 234365.

[43]

Y. Ding, J. Fu, S. Zhang, X. He, B. Zhao, J. Ren, J. Zhong, Z. Liu, Sep. Purif. Technol. 2024, 338, 126551.

[44]

W. Liu, Z. Zheng, Y. Zhang, X. Zhao, Z. Fu, J. Ye, X. Li, Y. Li, C. Hu, J. Alloys Compd. 2023, 963, 171130.

[45]

Y. Shin, S. Kim, S. Park, J. Lee, J. Bae, D. Kim, H. Joo, S. Ban, H. Lee, Y. Kim, K. Kwon, Renew. Sust. Energ. Rev. 2023, 187, 113693.

[46]

P. Xu, D. H. S. Tan, B. Jiao, H. Gao, X. Yu, Z. Chen, Adv. Funct. Mater. 2023, 33, 2213168.

[47]

Y. Lan, X. Li, G. Zhou, W. Yao, H. Cheng, Y. Tang, Adv. Sci. 2024, 11, 2304425.

[48]

T. Yang, Y. Lu, L. Li, D. Ge, H. Yang, W. Leng, H. Zhou, X. Han, N. Schmidt, M. Ellis, Z. Li, Adv. Sustain. Syst. 2020, 4, 1900088.

[49]

C. Li, H. Du, Y. Kang, Y. Zhao, Y. Tian, J. Wozny, J. Lu, T. Li, N. Tavajohi, M. Huang, B. Lan, F. Kang, B. Li, Next Sustain. 2023, 1, 100008.

[50]

K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji, Z. Piao, R. Gao, Y. Zhu, Z. Zhuang, G. Zhou, H. M. Cheng, Adv. Mater. 2023, 35, e2208034.

[51]

B. Chen, M. Liu, S. Cao, H. Hu, G. Chen, X. Guo, X. Wang, J. Alloys Compd. 2022, 924, 166487.

[52]

Q. Jing, J. Zhang, Y. Liu, W. Zhang, Y. Chen, C. Wang, ACS Sustain. Chem. Eng. 2020, 8, 17622.

[53]

W. Wang, R. Wang, R. Zhan, J. Du, Z. Chen, R. Feng, Y. Tan, Y. Hu, Y. Ou, Y. Yuan, C. Li, Y. Xiao, Y. Sun, Nano Lett. 2023, 23, 7485.

[54]

G. Liu, W. Wan, Q. Nie, C. Zhang, X. Chen, W. Lin, X. Wei, Y. Huang, J. Li, C. Wang, Energy Environ. Sci. 2024, 17, 1163.

[55]

Z. Yang, J. Zhang, Q. Wu, L. Zhi, W. Zhang, Chin. Ceram. Soc. 2013, 41, 1051.

[56]

F. Larouche, K. Amouzegar, G. Houlachi, P. Bouchard, G. P. Demopoulos, J. Electrochem. Soc. 2022, 169, 073509.

[57]

F. Larouche, F. Voisard, K. Amouzegar, G. Houlachi, P. Bouchard, A. Vijh, G. P. Demopoulos, Ind. Eng. Chem. Res. 2023, 62, 903.

[58]

M. Kim, M. Kim, H. Park, H. Li, B. Kang, Adv. Energy Mater. 2018, 8, 1800298.

[59]

M. Rasool, H. C. Chiu, R. Gauvin, D.-T. Jiang, J. Zhou, D. Ryan, K. Zaghib, G. P. Demopoulos, J. Phys. Chem. C 2020, 124, 5966.

[60]

J. Sun, Z. Jiang, P. Jia, S. Li, W. Wang, Z. Song, Y. Mao, X. Zhao, B. Zhou, Waste Manag. 2023, 158, 125.

[61]

L. Wang, J. Qiu, X. Wang, L. Chen, G. Cao, J. Wang, H. Zhang, X. He, eScience 2022, 2, 125.

[62]

M. Wohlfahrt-Mehrens, C. Vogler, J. Garche, J. Power Sources 2004, 127, 58.

[63]

R. Amin, J. Maier, Solid State Ionics 2008, 178, 1831.

[64]

J. Maier, R. Amin, J. Electrochem. Soc. 2008, 155, A339.

[65]

J. Wang, Y. Tang, J. Yang, R. Li, G. Liang, X. Sun, J. Power Sources 2013, 238, 454.

[66]

A. Chairunnisa, S. A. Wulandari, S. Salsabila, S. R. Putri, W. Maryam, A. B. D. Nandiyanto, Green Appl. Chem. 2020, 10, 49.

[67]

X. Qiu, C. Wang, Y. Chen, Z. du, L. Xie, Q. Han, L. Zhu, X. Cao, X. Ji, Small 2024, 20, e2402278.

[68]

T. Yingnakorn, J. Hartley, J. S. Terreblanche, C. Lei, W. M. Dose, A. P. Abbott, RSC Sustain. 2023, 1, 2341.

[69]

X. Zhao, X. Wang, J. Guo, Z. Y. Gu, J. M. Cao, J. L. Yang, F. Q. Lu, J. P. Zhang, X. L. Wu, Adv. Mater. 2024, 36, e2308927.

[70]

H. Tong, Y. Li, G. Mao, C. Wang, W. Yu, Y. Liu, M. Liu, Int. J. Miner. Metall. Mater. 2023, 30, 1162.

[71]

D. S. Vasconcelos, J. A. S. Tenório, A. B. Botelho Junior, D. C. R. Espinosa, Metals (Basel) 2023, 13, 543.

[72]

J. Kumar, R. R. Neiber, J. Park, R. A. Soomro, G. W. Greene, S. A. Mazari, H. Y. Seo, J. H. Lee, M. Shon, D. W. Chang, K. Y. Cho, Chem. Eng. J. 2022, 431, 133993.

[73]

L. Wu, F. S. Zhang, K. He, Z. Y. Zhang, C. C. Zhang, J. Clean. Prod. 2022, 380, 135045.

[74]

H. Bi, H. Zhu, L. Zu, S. He, Y. Gao, S. Gao, Waste Manag. Res. 2019, 37, 374.

[75]

T. O. Folayan, R. Zhan, K. Huang, L. Pan, ACS Sustain. Chem. Eng. 2023, 11, 2917.

[76]

G. Shi, J. Cheng, J. Wang, S. Zhang, X. Shao, X. Chen, X. Li, B. Xin, J. Energy Storage 2023, 72, 108486.

[77]

Y. He, X. Yuan, G. Zhang, H. Wang, T. Zhang, W. Xie, L. Li, Sci. Total Environ. 2021, 766, 142382.

[78]

A. V. Yakovlev, A. I. Finaenov, S. L. Zabud'kov, E. V. Yakovleva, Russ. J. Appl. Chem. 2006, 79, 1741.

[79]

A. A. Chernyshev, A. B. Darintseva, T. N. Ostanina, I. A. Panashchenko, A. A. Orlova, A. E. Novikov, A. S. Artamonov, Int. J. Hydrog. Energy 2021, 46, 16848.

[80]

Y. Bai, R. Essehli, C. J. Jafta, K. M. Livingston, I. Belharouak, ACS Sustain. Chem. Eng. 2021, 9, 6048.

[81]

L. P. He, S. Y. Sun, X. F. Song, J. G. Yu, Waste Manag. 2015, 46, 523.

[82]

X. Zeng, J. Li, J. Hazard. Mater. 2014, 271, 50.

[83]

X. Zhang, Y. Xie, X. Lin, H. Li, H. Cao, J. Mater. Cycles Waste Manag. 2013, 15, 420.

[84]

Y. Ji, E. E. Kpodzro, C. T. Jafvert, F. Zhao, Clean Technol. Recycl. 2021, 1, 124.

[85]

B. Zhang, Y. Xu, D. S. Silvester, C. E. Banks, W. Deng, G. Zou, H. Hou, X. Ji, J. Power Sources 2024, 589, 233728.

[86]

J. Yan, J. Qian, Y. Li, L. Li, F. Wu, R. Chen, Adv. Funct. Mater. 2024, 34, 2405055.

[87]

S. Chakraborty, A. K. Saha, J. Energy Storage. 2022, 55, 105557.

[88]

S. Vinodh, M. Prasanna, N. Hari Prakash, Appl. Math. Model. 2014, 38, 4662.

[89]

A. Hurynovich, M. Kwietniewski, V. Romanovski, Desalin. Water Treat. 2021, 227, 16.

[90]

B. Hemdan, V. K. Garlapati, S. Sharma, S. Bhadra, S. Maddirala, V. K.M., V. Motru, P. Goswami, S. Sevda, T. M. Aminabhavi, Environ. Res. 2022, 204, 112346.

[91]

T. Huang, T. Junjun, W. Liu, D. Song, L. X. Yin, S. Zhang, Waste Manag. 2021, 126, 377.

[92]

V. Echavarri-Bravo, H. Amari, J. Hartley, G. Maddalena, C. Kirk, M. W. Tuijtel, N. D. Browning, L. E. Horsfall, Green Chem. 2022, 24, 8512.

[93]

V. Romanovski, A. Dubina, A. Akbari Sehat, X. Su, D. Moskovskikh, in Materials for energy production, conversion, and Storage (Eds: J. Johnson M, N. V. Salim, S. Thomas), CRC Press, Boca Raton, FL 2024, pp. 118–135.

[94]

J. Wang, J. Ma, Z. Zhuang, Z. Liang, K. Jia, G. Ji, G. Zhou, H.-M. Cheng, Chem. Rev. 2024, 124, 2839.

[95]

J. Zhou, X. Zhou, W. Yu, Z. Shang, S. Xu, Electrochem. Energy Rev. 2024, 7, 13.

[96]

T. Wang, H. Luo, Y. Bai, J. Li, I. Belharouak, S. Dai, Adv. Energy Mater. 2020, 10, 2001204.

[97]

T. Wang, H. Luo, J. Fan, B. P. Thapaliya, Y. Bai, I. Belharouak, S. Dai, iScience 2022, 25, 103801.

[98]

J. Wang, Q. Zhang, J. Sheng, Z. Liang, J. Ma, Y. Chen, G. Zhou, H.-M. Cheng, Natl. Sci. Rev. 2022, 9, nwac097.

[99]

K. Park, J. Yu, J. Coyle, Q. Dai, S. Frisco, M. Zhou, A. Burrell, ACS Sustain. Chem. Eng. 2021, 9, 8214.

[100]

M. Xu, C. Wu, F. Zhang, Y. Zhang, J. Ren, C. Zhang, X. Wang, L. Xiao, O. Fontaine, J. Qian, Energy Storage Mater. 2024, 71, 103611.

[101]

S. Orangi, A. H. Strømman, Batteries 2022, 8, 83.

[102]

T. Ibn-Mohammed, C. A. Randall, K. B. Mustapha, J. Guo, J. Walker, S. Berbano, S. C. L. Koh, D. Wang, D. C. Sinclair, I. M. Reaney, J. Eur. Ceram. Soc. 2019, 39, 5213.

[103]

Y. GadelHak, M. El-Azazy, M. F. Shibl, R. K. Mahmoud, Sci. Total Environ. 2023, 875, 162629.

[104]

A. Chairunnisa, A. B. Dani Nandiyanto, Int. J. Energetica 2020,

[105]

F. Zhao, F. Han, S. Zhang, H. Tian, Y. Yang, K. Sun, Energy 2018, 162, 669.

[106]

Thermo Fisher Scientific, https://www.fishersci.com/ (accessed: August 2024).

[107]

M. Fan, X. Chang, X. H. Meng, C.-F. Gu, C.-H. Zhang, Q. Meng, L.-J. Wan, Y.-G. Guo, CCS Chem. 2023, 5, 1189.

[108]

J. Dunn, A. Kendall, M. Slattery, Resour. Conserv. Recycl. 2022, 185, 106488.

[109]

H. Mahandra, A. Ghahreman, Resour. Conserv. Recycl. 2021, 175, 105883.

[110]

M. Shan, C. Dang, K. Meng, Y. Cao, X. Zhu, J. Zhang, G. Xu, M. Zhu, Mater. Today 2024, 73, 130.

[111]

J. Nanda, S. K. Martha, W. D. Porter, H. Wang, N. J. Dudney, M. D. Radin, D. J. Siegel, J. Power Sources 2014, 251, 8.

[112]

D. Sohrabi Baba Heidary, M. Lanagan, C. A. Randall, J. Eur. Ceram. Soc. 2018, 38, 1018.

[113]

H. Li, A. Ndjamo, P. Sauriol, G. S. Patience, Adv. Powder Technol. 2017, 28, 1000.

[114]

P. Benedek, N. Wenzler, M. Yarema, V. C. Wood, RSC Adv. 2017, 7, 17763.

[115]

F. Larouche, F. Tedjar, K. Amouzegar, G. Houlachi, P. Bouchard, G. P. Demopoulos, K. Zaghib, Materials 2020, 13, 801.

[116]

J. Li, L. Li, R. Yang, J. Jiao, J. Energy Storage 2023, 65, 107306.

[117]

G. Wei, Y. Liu, B. Jiao, N. Chang, M. Wu, G. Liu, X. Lin, X. Weng, J. Chen, L. Zhang, C. Zhu, G. Wang, P. Xu, J. Di, Q. Li, iScience 2023, 26, 107676.

[118]

J. B. Dunn, C. James, L. Gaines, K. Gallagher, Q. Dai, J. C. Kelly, Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries, Argonne National Lab (ANL), Argonne, IL 2015.

[119]

Made In China, https://www.made-in-china.com (accessed: August 2024).

[120]

F. Zhao, F. Han, S. Zhang, Z. Zhang, Adv. Powder Technol. 2021, 32, 10.

[121]

C. Busà, M. Belekoukia, M. J. Loveridge, Electrochim. Acta 2021, 366, 137358.

[122]

F. Zhao, F. Han, S. Zhang, Z. Zhang, Powder Technol. 2020, 375, 244.

[123]

M. D. Bouguern, A. K. Madikere Raghunatha Reddy, X. Li, S. Deng, H. Laryea, K. Zaghib, Batteries 2024, 10, 39.

[124]

Y. Yang, J. Zhang, H. Zhang, Y. Wang, Y. Chen, C. Wang, Energy Storage Mater. 2024, 65, 103081.

[125]

M. Wentker, M. Greenwood, J. Leker, Energies (Basel) 2019, 12, 504.

[126]

D. V. Horváth, J. Coelho, R. Tian, V. Nicolosi, J. N. Coleman, ACS Appl. Energy Mater. 2020, 3, 10154.

[127]

H. Zheng, J. Li, X. Song, G. Liu, V. S. Battaglia, Electrochim. Acta 2012, 71, 258.

[128]

X. Li, M. Ge, Q. Zhou, Z. Gao, Y. Cui, M. Zhang, X. Tang, H. Zhang, Z. Shi, Y. Yin, S. Yang, Langmuir 2023, 39, 13132.

[129]

R. Tian, S. H. Park, P. J. King, G. Cunningham, J. Coelho, V. Nicolosi, J. N. Coleman, Nat. Commun. 2019, 10, 1933.

[130]

PlotDigitizer, https://plotdigitizer.com/ (accessed: August 2024).

[131]

H. Yoshida, N. Imamura, T. Inoue, K. Komada, Electrochemistry 2003, 71, 1018.

[132]

M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev, R. J. Staniewicz, J. Power Sources 2001, 97, 13.

[133]

H. J. Ploehn, P. Ramadass, R. E. White, J. Electrochem. Soc. 2004, 151, A456.

[134]

Y. Morino, J. Power Sources 2022, 541, 231672.

[135]

T. Hashimoto, H. Munakata, K. Kanamura, Electrochemistry 2021, 89, 303.

[136]

R. E. Ciez, J. F. Whitacre, Nat. Sustain. 2019, 2, 148.

[137]

T. Zhao, W. Li, M. Traversy, Y. Choi, A. Ghahreman, Z. Zhao, C. Zhang, W. Zhao, Y. Song, J. Environ. Manag. 2024, 351, 119670.

[138]

M. Gutsch, J. Leker, Appl. Energy 2024, 353, 122132.

[139]

M. Mohr, J. F. Peters, M. Baumann, M. Weil, J. Ind. Ecol. 2020, 24, 1310.

[140]

Greenhouse gas equivalencies calculator, https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator (accessed: August 2024).

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/