Ligand-Driven Electron-Deficient Cobalt Pentlandite Nanocrystals for Efficient Hydrogen Peroxide Electrosynthesis

Jeong-Hyun Kim , Jeong-Gyu Lee , Chang Seong Kim , Min-Jae Choi

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12848

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12848 DOI: 10.1002/eem2.12848
RESEARCH ARTICLE

Ligand-Driven Electron-Deficient Cobalt Pentlandite Nanocrystals for Efficient Hydrogen Peroxide Electrosynthesis

Author information +
History +
PDF

Abstract

Cobalt pentlandite (Co9S8) is a promising non-precious catalyst due to its superior oxygen reduction reaction activity and excellent stability. However, its oxygen reduction reaction catalytic activity has traditionally been limited to the four-electron pathway because of strong *OOH intermediate adsorption. In this study, we synthesized electron-deficient Co9S8 nanocrystals with an increased number of Co3+ states compared to conventional Co9S8. This was achieved by incorporating a high density of surface ligands in small-sized Co9S8 nanocrystals, which enabled the transition of the electrochemical reduction pathway from four-electron oxygen reduction reaction to two-electron oxygen reduction reaction by decreasing *OOH adsorption strength. As a result, the Co3+-enriched Co9S8 nanocrystals exhibited a high onset potential of 0.64 V (vs RHE) for two-electron oxygen reduction reaction, achieving H2O2 selectivity of 70–80% over the potential range from 0.05 to 0.6 V. Additionally, these nanocrystals demonstrated a stable H2O2 electrosynthesis at a rate of 459.12 mmol g-1 h-1 with a H2O2 Faradaic efficiency over 90% under alkaline conditions. This study provides insights into nanoscale catalyst design for modulating electrochemical reactions.

Keywords

cobalt pentlandite / electrocatalysis / hydrogen peroxide synthesis / oxidation state / oxygen reduction reaction

Cite this article

Download citation ▾
Jeong-Hyun Kim, Jeong-Gyu Lee, Chang Seong Kim, Min-Jae Choi. Ligand-Driven Electron-Deficient Cobalt Pentlandite Nanocrystals for Efficient Hydrogen Peroxide Electrosynthesis. Energy & Environmental Materials, 2025, 8(2): e12848 DOI:10.1002/eem2.12848

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. Yamanaka, T. Murayama, Angew. Chem. 2008, 120, 1926.

[2]

B.-W. Zhang, T. Zheng, Y.-X. Wang, Y. Du, S.-Q. Chu, Z. Xia, R. Amal, S.-X. Dou, L. Dai, Commun. Chem. 2022, 5, 43.

[3]

J. M Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962.

[4]

S. Siahrostami, Chem. Catal. 2023, 3, 100568.

[5]

J. S. Lim, Y. J. Sa, S. H. Joo, Cell Rep. Phys. Sci. 2022, 3, 100987.

[6]

S. C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber, L. Wang, C. Ponce de León, F. C. Walsh, Nat. Rev. Chem. 2019, 3, 442.

[7]

S. Siahrostami, S. J. Villegas, A. H. Bagherzadeh Mostaghimi, S. Back, A. B. Farimani, H. Wang, K. A. Persson, J. Montoya, ACS Catal. 2020, 10, 7495.

[8]

T. Ricciardulli, S. Gorthy, J. S. Adams, C. Thompson, A. M. Karim, M. Neurock, D. W. Flaherty, J. Am. Chem. Soc. 2021, 143, 5445.

[9]

Z. Zheng, Y. H. Ng, D. W. Wang, R. Amal, Adv. Mater. 2016, 28, 9949.

[10]

J. Gao, H. B. Yang, X. Huang, S.-F. Hung, W. Cai, C. Jia, S. Miao, H. M. Chen, X. Yang, Y. Huang, Chem 2020, 6, 658.

[11]

C. Liu, H. Li, J. Chen, Z. Yu, Q. Ru, S. Li, G. Henkelman, L. Wei, Y. Chen, Small 2021, 17, 2007249.

[12]

H. Sheng, E. D. Hermes, X. Yang, D. Ying, A. N. Janes, W. Li, J. Schmidt, S. Jin, ACS Catal. 2019, 9, 8433.

[13]

Y. Feng, T. He, N. Alonso-Vante, Electrochim. Acta 2009, 54, 5252.

[14]

Y. R. Zheng, S. Hu, X. L. Zhang, H. Ju, Z. Wang, P. J. Tan, R. Wu, F. Y. Gao, T. Zhuang, X. Zheng, Adv. Mater. 2022, 34, 2205414.

[15]

L.-L. Feng, G.-D. Li, Y. Liu, Y. Wu, H. Chen, Y. Wang, Y.-C. Zou, D. Wang, X. Zou, ACS Appl. Mater. Interfaces 2015, 7, 980.

[16]

X. Feng, Q. Jiao, T. Liu, Q. Li, M. Yin, Y. Zhao, H. Li, C. Feng, W. Zhou, ACS Sustain. Chem. Eng. 2018, 6, 1863.

[17]

Y. Yang, M. Yuan, H. Li, G. Sun, S. Ma, Electrochim. Acta 2018, 281, 198.

[18]

N. Jia, J. Liu, Y. Gao, P. Chen, X. Chen, Z. An, X. Li, Y. Chen, ChemSusChem 2019, 12, 3390.

[19]

S. Zhang, D. Zhai, T. Sun, A. Han, Y. Zhai, W.-C. Cheong, Y. Liu, C. Su, D. Wang, Y. Li, Appl. Catal. B 2019, 254, 186.

[20]

D. Lyu, S. Yao, A. Ali, Z. Q. Tian, P. Tsiakaras, P. K. Shen, Adv. Energy Mater. 2021, 11, 2101249.

[21]

W. Roth, J. Phys. Chem. Solid 1964,

[22]

A. Walsh, S.-H. Wei, Y. Yan, M. Al-Jassim, J. A. Turner, M. Woodhouse, B. Parkinson, Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 165119.

[23]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[24]

M. Fronzi, S. A. Tawfik, C. Stampfl, M. J. Ford, Phys. Chem. Chem. Phys. 2018, 20, 2356.

[25]

X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu, X. Han, Nanoscale 2018, 10, 4816.

[26]

Z.-Z. Wu, F.-Y. Gao, M.-R. Gao, Energ. Environ. Sci. 2021, 14, 1121.

[27]

S. K. Biswal, C. Ranjan, J. Mater. Chem. A 2022, 10, 22042.

[28]

Y. Chen, Y. Liu, L. Li, T. Sakthive, Z. Guo, Z. Dai, Adv. Funct. Mater. 2024, 34, 2406587.

[29]

Y. Liu, L. Li, L. Wang, N. Li, X. Zhao, Y. Chen, T. Sakthivel, Z. Dai, Nat. Commun. 2024, 15, 2851.

[30]

Y. Chen, Y. Liu, L. Li, T. Sakthivel, Z. Guo, Z. Dai, Adv. Funct. Mater. 2024, 34, 2401452.

[31]

Y. Kim, M.-J. Choi, J. Choi, J. Mater. Sci. Technol. 2023, 147, 224.

[32]

M.-J. Choi, F. P. García de Arquer, A. H. Proppe, A. Seifitokaldani, J. Choi, J. Kim, S.-W. Baek, M. Liu, B. Sun, M. Biondi, Nat. Commun. 2020, 11, 103.

[33]

O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland, E. H. Sargent, ACS Nano 2012, 6, 8448.

[34]

C. Zhang, L. Yuan, C. Liu, Z. Li, Y. Zou, X. Zhang, Y. Zhang, Z. Zhang, G. Wei, C. Yu, J. Am. Chem. Soc. 2023, 145, 7791.

[35]

Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li, C.-Y. Su, N. Ogiwara, H. Kobayashi, H. Kitagawa, M. Liu, Nat. Commun. 2019, 10, 5048.

[36]

Y. Jia, Z. Xue, J. Yang, Q. Liu, J. Xian, Y. Zhong, Y. Sun, X. Zhang, Q. Liu, D. Yao, Angew. Chem. Int. Ed. 2022, 61, e202110838.

[37]

N. V. Jadhav, A. I. Prasad, A. Kumar, R. Mishra, S. Dhara, K. Babu, C. Prajapat, N. Misra, R. Ningthoujam, B. Pandey, Colloids Surf. B 2013, 108, 158.

[38]

M. J. Turo, J. E. Macdonald, ACS Nano 2014, 8, 10205.

[39]

A. Sels, V. Subramanian, ACS Omega 2023, 8, 1929.

[40]

M. Biondi, M.-J. Choi, S. Lee, K. Bertens, M. Wei, A. R. Kirmani, G. Lee, H. T. Kung, L. J. Richter, S. Hoogland, ACS Energy Lett. 2021, 6, 468.

[41]

H. Liu, C.-Y. Xu, Y. Du, F.-X. Ma, Y. Li, J. Yu, L. Zhen, Sci. Rep. 2019, 9, 1951.

[42]

H. Choi, J.-H. Ko, Y.-H. Kim, S. Jeong, J. Am. Chem. Soc. 2013, 135, 5278.

[43]

W. Yang, Q. Mo, Q. T. He, X. P. Li, Z. Xue, Y. L. Lu, J. Chen, K. Zheng, Y. Fan, G. Li, Angew. Chem. Int. Ed. 2024, 63, e202406564.

[44]

B.-H. Lee, H. Shin, A. S. Rasouli, H. Choubisa, P. Ou, R. Dorakhan, I. Grigioni, G. Lee, E. Shirzadi, R. K. Miao, Nat. Catal. 2023, 6, 234.

[45]

C. Zhang, R. Lu, C. Liu, J. Lu, Y. Zou, L. Yuan, J. Wang, G. Wang, Y. Zhao, C. Yu, Adv. Sci. 2022, 9, 2104768.

[46]

E. Jung, H. Shin, B.-H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. Hooch Antink, S. Park, K.-S. Lee, Nat. Mater. 2020, 19, 436.

[47]

S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Colic, R. Frydendal, J. Rossmeisl, I. Chorkendorff, I. E. Stephens, ACS Catal. 2018, 8, 4064.

[48]

Y. Pang, H. Xie, Y. Sun, M.-M. Titirici, G.-L. Chai, J. Mater. Chem. A 2020, 8, 24996.

[49]

J. Wu, A. Mehmood, G. Zhang, S. Wu, G. Ali, A. Kucernak, ACS Catal. 2021, 11, 5035.

[50]

Q. Chang, P. Zhang, A. H. B. Mostaghimi, X. Zhao, S. R. Denny, J. H. Lee, H. Gao, Y. Zhang, H. L. Xin, S. Siahrostami, Nat. Commun. 2020, 11, 2178.

[51]

Q. Yang, W. Xu, S. Gong, G. Zheng, Z. Tian, Y. Wen, L. Peng, L. Zhang, Z. Lu, L. Chen, Nat. Commun. 2020, 11, 5478.

[52]

J. S. Lim, J. H. Kim, J. Woo, D. San Baek, K. Ihm, T. J. Shin, Y. J. Sa, S. H. Joo, Chem 2021, 7, 3114.

[53]

Y. Chen, C. Zhen, Y. Chen, H. Zhao, Y. Wang, Z. Yue, Q. Wang, J. Li, M. D. Gu, Q. Cheng, Angew. Chem. Int. Ed. 2024, 63, e202407163.

[54]

C. Liu, Z. Yu, F. She, J. Chen, F. Liu, J. Qu, J. M. Cairney, C. Wu, K. Liu, W. Yang, Energy Environ. Sci. 2023, 16, 446.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/