Targeted Electrocatalysis for High-Performance Lithium–Sulfur Batteries

Aqsa Nazir , Anil Pathak , Dambar Hamal , Osama Awadallah , Saeme Motevalian , Ana Claus , Vadym Drozd , Bilal El-Zahab

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12844

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12844 DOI: 10.1002/eem2.12844
RESEARCH ARTICLE

Targeted Electrocatalysis for High-Performance Lithium–Sulfur Batteries

Author information +
History +
PDF

Abstract

The intricate sulfur redox chemistry involves multiple electron transfers and complicated phase changes. Catalysts have been previously explored to overcome the kinetic barrier in lithium–sulfur batteries (LSBs). This work contributes to closing the knowledge gap and examines electrocatalysis for enhancing LSB kinetics. With a strong chemical affinity for polysulfides, the electrocatalyst enables efficient adsorption and accelerated electron transfer reactions. Resulting cells with catalyzed cathodes exhibit improved rate capability and excellent stability over 500 cycles with 91.9% capacity retention at C/3. In addition, cells were shown to perform at high rates up to 2C and at high sulfur loadings up to 6 mg cm-2. Various electrochemical, spectroscopic, and microscopic analyses provide insights into the mechanism for retaining high activity, coulombic efficiency, and capacity. This work delves into crucial processes identifying pivotal reaction steps during the cycling process at commercially relevant areal capacities and rates.

Keywords

batteries / catalysts / electrochemistry / electrodes / energy materials

Cite this article

Download citation ▾
Aqsa Nazir, Anil Pathak, Dambar Hamal, Osama Awadallah, Saeme Motevalian, Ana Claus, Vadym Drozd, Bilal El-Zahab. Targeted Electrocatalysis for High-Performance Lithium–Sulfur Batteries. Energy & Environmental Materials, 2025, 8(2): e12844 DOI:10.1002/eem2.12844

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. X. Chen, M. Zhao, L. P. Hou, X. Q. Zhang, B. Q. Li, J. Q. Huang, Adv. Mater. 2022, 34, e2201555.

[2]

M. Y. Wang, Z. C. Bai, T. Yang, C. H. Nie, X. Xu, Y. X. Wang, J. Yang, S. X. Dou, N. N. Wang, Adv. Energy Mater. 2022, 12, 2201585.

[3]

H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.

[4]

A. Manthiram, S. H. Chung, C. X. Zu, Adv. Mater. 2015, 27, 1980.

[5]

Z. H. Shen, X. Jin, J. M. Tian, M. Li, Y. F. Yuan, S. Zhang, S. S. Fang, X. Fan, W. G. Xu, H. Lu, J. Lu, H. G. Zhang, Nat Catal 2022, 5, 555.

[6]

Y. Chen, T. Y. Wang, H. J. Tian, D. W. Su, Q. Zhang, G. X. Wang, Adv. Mater. 2021, 33, 2003666.

[7]

H. J. Peng, G. Zhang, X. Chen, Z. W. Zhang, W. T. Xu, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Edit. 2016, 55, 12990.

[8]

H. Zhang, L. K. Ono, G. Q. Tong, Y. Q. Liu, Y. B. Qi, Nat. Commun. 2021, 12, 4738.

[9]

T. Liu, Z. Shi, H. J. Li, W. J. Xue, S. S. Liu, J. M. Yue, M. L. Mao, Y. S. Hu, H. Li, X. J. Huang, L. Q. Chen, L. M. Suo, Adv. Mater. 2021, 33, e2102034.

[10]

W. C. Ren, W. Ma, S. F. Zhang, B. T. Tang, Energy Storage Mater. 2019, 23, 707.

[11]

J. Zhang, C. Y. You, J. Wang, H. Xu, C. Z. Zhu, S. H. Guo, W. H. Zhang, R. Yang, Y. H. Xu, Chem. Eng. J. 2019, 368, 340.

[12]

W. D. Zhou, C. M. Wang, Q. L. Zhang, H. D. Abruña, Y. He, J. W. Wang, S. X. Mao, X. C. Xiao, Adv. Energy Mater. 2015, 5, 1401752.

[13]

S. A. Lateef, M. Manjum, H. A. Mcray, W. E. Mustain, G. Jalilvand, ACS Appl. Energ Mater. 2023, 6, 9307.

[14]

G. F. Zeng, Y. P. Liu, D. J. Chen, C. Zhen, Y. P. Han, W. D. He, Adv. Energy Mater. 2021, 11, 2102058.

[15]

F. C. Zhang, Z. H. Tang, L. R. Zheng, T. F. Zhang, M. Y. Xu, H. Xiao, H. F. Zhuang, P. Y. Han, Q. M. Gao, Appl. Catal. B Environ. 2023, 334, 122876.

[16]

H. F. Zhuang, T. F. Zhang, H. Xiao, F. C. Zhang, P. Y. Han, H. F. Gu, J. R. Jiao, W. X. Chen, Q. M. Gao, Appl. Catal. B Environ. Energy 2024, 340, 123273.

[17]

H. Chen, Z. Z. Wu, M. T. Zheng, T. C. Liu, C. Yan, J. Lu, S. Q. Zhang, Mater. Today 2022, 52, 364.

[18]

P. Wang, B. J. Xi, M. Huang, W. H. Chen, J. K. Feng, S. L. Xiong, Adv. Energy Mater. 2021, 11, 2002893.

[19]

L. Zhou, D. L. Danilov, F. Qiao, J. F. Wang, H. T. Li, R. A. Eichel, P. H. L. Notten, Adv. Energy Mater. 2022, 12, 2202094.

[20]

S. F. Ng, M. Y. L. Lau, W. J. Ong, Adv. Mater. 2021, 33, 2008654.

[21]

Y. R. Zhong, Q. Wang, S. M. Bak, S. Hwang, Y. H. Du, H. L. Wang, J. Am. Chem. Soc. 2023, 145, 7390.

[22]

W. X. Hua, H. Li, C. Pei, J. Y. Xia, Y. F. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B. S. Zhang, S. Z. Qiao, Y. Wan, Q. H. Yang, Adv. Mater. 2021, 33, 2101006.

[23]

L. L. Peng, Z. Y. Wei, C. Z. Wan, J. Li, Z. Chen, D. Zhu, D. Baumann, H. T. Liu, C. S. Allen, X. Xu, A. I. Kirkland, I. Shakir, Z. Almutairi, S. Tolbert, B. Dunn, Y. Huang, P. Sautet, X. F. Duan, Nat. Catal. 2020, 3, 762.

[24]

S. Y. Wang, Z. W. Wang, F. Z. Chen, B. Peng, J. Xu, J. Z. Li, Y. H. Lv, Q. Kang, A. L. Xia, L. B. Ma, Nano Res. 2023, 16, 4438.

[25]

W. X. Hua, T. X. Shang, H. Li, Y. F. Sun, Y. Guo, J. Y. Xia, C. N. Geng, Z. H. Hu, L. K. Peng, Z. Y. Han, C. Zhang, W. Lv, Y. Wan, Nat. Catal. 2023, 6, 174.

[26]

Y. J. Qi, N. Chai, Q. H. Gu, J. N. Chen, M. Lu, X. Zhang, B. S. Zhang, Chem. Eng. J. 2022, 435, 135112.

[27]

M. Z. Sun, Z. Wang, X. Li, H. B. Li, H. S. Jia, X. X. Xue, M. Jin, J. Q. Li, Y. Xie, M. Feng, J. Mater. Chem. A 2020, 8, 11818.

[28]

H. Yuan, H. J. Peng, B. Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J. Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1802768.

[29]

X. Q. Zhou, J. Zhou, L. H. Sun, S. Chen, M. Y. Wang, X. D. Meng, J. Qu, C. K. Sun, Z. Z. Yu, Y. Huang, C. W. Bielawski, J. X. Geng, ACS Appl. Energy Mater. 2023, 6, 11157.

[30]

W. Zhang, H. Pan, N. Han, S. H. Feng, X. Zhang, W. Guo, P. P. Tan, S. J. Xie, Z. Y. Zhou, Q. R. Ma, X. L. Guo, A. Vlad, M. Wubbenhorst, J. S. Luo, J. Fransaer, Adv. Energy Mater. 2023, 13, 2301551.

[31]

C. Y. Kung, Y. P. Chiang, T. C. Chan, S. H. Chung, J. Power Sources 2024, 622, 235365.

[32]

C. Y. Kung, S. H. Chung, Mater. Horiz. 2023, 10, 4857.

[33]

J. P. Shang, C. Ma, C. J. Zhang, W. W. Zhang, B. G. Shen, F. H. Wang, S. Guo, S. S. Yao, ACS Appl. Nano Mater. 2024, 7, 1786.

[34]

Z. J. Lin, X. Li, W. L. Huang, X. Zhu, Y. Wang, Z. Q. Shan, ChemElectroChem 2017, 4, 2577.

[35]

Z. Y. Wang, B. H. Zhang, S. Liu, G. R. Li, T. Y. Yan, X. P. Gao, Adv. Funct. Mater. 2022, 32, 2200893.

[36]

F. F. Han, L. W. Fan, Z. G. Zhang, X. T. Zhang, L. L. Wu, Small 2023, 20, 2307950.

[37]

F. F. Han, L. W. Fan, X. Z. Ma, H. Q. Lu, L. Li, X. T. Zhang, L. L. Wu, Energy Environ. Mater. 2024, 7, e12623.

[38]

G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.

[39]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[40]

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671.

[41]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[42]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

[43]

K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.

[44]

M. Manadé, F. Viñes, F. Illas, Carbon 2015, 95, 525.

[45]

Y. T. Liu, Y. Elias, J. S. Meng, D. Aurbach, R. Q. Zou, D. G. Xia, Q. Q. Pang, Joule 2021, 5, 2323.

[46]

P. Xue, K. P. Zhu, W. B. Gong, J. Pu, X. Y. Li, C. Guo, L. Y. Wu, R. Wang, H. P. Li, J. Y. Sun, G. Hong, Q. Zhang, Y. G. Yao, Adv. Energy Mater. 2022, 12, 2200308.

[47]

Z. Li, J. Zhang, B. Guan, D. Wang, L. M. Liu, X. W. Lou, Nat. Commun. 2016, 7, 13065.

[48]

Y. Yang, W. X. Hu, Y. F. Peng, Y. M. Wei, J. Phys. Chem. C 2023, 127, 4465.

[49]

F. Y. Fan, W. C. Carter, Y. M. Chiang, Adv. Mater. 2015, 27, 5203.

[50]

U. Gulzar, A. Lonergan, V. Egorov, Y. Zhang, A. Grant, A. Carroll, C. O’Dwyer, J. Electrochem. Soc. 2023, 170, 030503.

[51]

W. Guo, W. Y. Zhang, Y. B. Si, D. H. Wang, Y. Z. Fu, A. Manthiram, Nat. Commun. 2021, 12, 3031.

[52]

H. Sul, A. Bhargav, A. Manthiram, Adv. Energy Mater. 2022, 12, 2200680.

[53]

H. Chu, H. Noh, Y. J. Kim, S. Yuk, J. H. Lee, J. Lee, H. Kwack, Y. Kim, D. K. Yang, H. T. Kim, Nat. Commun. 2019, 10, 188.

[54]

J. M. Sun, Y. H. Liu, L. Liu, J. X. Bi, S. Y. Wang, Z. Z. Du, H. F. Du, K. Wang, W. Ai, W. Huang, Adv. Mater. 2023, 35, 2211168.

[55]

N. Logeshwaran, I. R. Panneerselvam, S. Ramakrishnan, R. S. Kumar, A. R. Kim, Y. Wang, D. J. Yoo, Adv. Sci. 2022, 9, 2105344.

[56]

T. Gan, J. X. Yang, D. Morris, X. F. Chu, P. Zhang, W. X. Zhang, Y. C. Zou, W. F. Yan, S. H. Wei, G. Liu, Nat. Commun. 2021, 12, 2741.

[57]

Y. W. Song, J. L. Qin, C. X. Zhao, M. Zhao, L. P. Hou, Y. Q. Peng, H. J. Peng, B. Q. Li, J. Energy Chem. 2022, 64, 568.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/