Stable Zn-Metal Anode Enabled by Solvation Structure Modulation and In-Situ SEI Layer Construction

Hao Wu , Hongting Yin , Han Tian , Jinlin Yang , Ruiping Liu

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12839

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12839 DOI: 10.1002/eem2.12839
RESEARCH ARTICLE

Stable Zn-Metal Anode Enabled by Solvation Structure Modulation and In-Situ SEI Layer Construction

Author information +
History +
PDF

Abstract

Aqueous zinc-ion batteries encounter impediments on their trajectory towards commercialization, primarily due to challenges such as dendritic growth, hydrogen evolution reaction. Throughout recent decades of investigation, electrolyte modulation by using function additives is widely considered as a facile and efficient way to prolong the Zn anode lifespan. Herein, N-(2-hydroxypropyl)ethylenediamine is employed as an additive to attach onto the Zn surface with a substantial adsorption energy with (002) facet. The as-formed in-situ solid-electrolyte interphase layer effectively mitigates hydrogen evolution reaction by constructing a lean-water internal Helmholtz layer. Additionally, N-(2-hydroxypropyl)ethylenediamine establishes a coordination complex with Zn2+, thereby modulating the solvation structure and enhancing the mobility of Zn2+. As expected, the Zn-symmetrical cell with N-(2-hydroxypropyl)ethylenediamine additive demonstrated successful cycling exceeding 1500 h under 1 mA cm-2 for 0.5 mAh cm-2. Furthermore, the Zn//δ-MnO2 battery maintains a capacity of approximately 130 mAh g-1 after 800 cycles at 1 A g-1, with a Coulombic efficiency surpassing 98%. This work presents a streamlined approach for realizing aqueous zinc-ion batteries with extended service life.

Keywords

aqueous Zn-ion batteries / dendrites suppression / in-situ SEI / solvation structure / Zn-metal anodes

Cite this article

Download citation ▾
Hao Wu, Hongting Yin, Han Tian, Jinlin Yang, Ruiping Liu. Stable Zn-Metal Anode Enabled by Solvation Structure Modulation and In-Situ SEI Layer Construction. Energy & Environmental Materials, 2025, 8(2): e12839 DOI:10.1002/eem2.12839

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. X. Zheng, Q. Zhao, T. Tang, J. F. Yin, C. D. Quilty, G. D. Renderos, X. T. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. H. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645.

[2]

J. X. Zheng, D. C. Bock, T. Tang, Q. Zhao, J. F. Yin, K. R. Tallman, G. Wheeler, X. T. Liu, Y. Deng, S. Jin, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, L. A. Archer, Nat. Energy 2021, 6, 398.

[3]

W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li, W. Zong, H. Li, Z. Li, Z. Zhang, J. Zhu, F. Guo, X. Gao, Z. Du, J. Chen, T. Wang, G. He, I. P. Parkin, Angew. Chem. Int. Ed. Engl. 2023, 62, e202212695.

[4]

R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao, L. Qie, Y. Huang, Nat. Commun. 2022, 13, 3252.

[5]

M. Wu, G. Zhang, H. Yang, X. Liu, M. Dubois, M. A. Gauthier, S. Sun, InfoMat 2021, 4, e12265.

[6]

S. J. Zhang, J. Hao, D. Luo, P. F. Zhang, B. Zhang, K. Davey, Z. Lin, S. Z. Qiao, Adv. Energy Mater. 2021, 11, 2102010.

[7]

J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Energy Environ. Sci. 2018, 11, 3075.

[8]

H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Adv. Energy Mater. 2021, 11, 202100186.

[9]

H. Peng, C. Liu, N. Wang, C. Wang, D. Wang, Y. Li, B. Chen, J. Yang, Y. Qian, Energy Environ. Sci. 2022, 15, 1682.

[10]

Y. Mu, Z. Li, B. K. Wu, H. Huang, F. Wu, Y. Chu, L. Zou, M. Yang, J. He, L. Ye, M. Han, T. Zhao, L. Zeng, Nat. Commun. 2023, 14, 4205.

[11]

Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong, J. Feng, Y. Qian, ACS Nano 2019, 13, 11676.

[12]

H. Wang, W. Ye, B. Yin, K. Wang, M. S. Riaz, B. B. Xie, Y. Zhong, Y. Hu, Angew. Chem. Int. Ed. Engl. 2023, 62, e202218872.

[13]

H. Li, Y. Ren, Y. Zhu, J. Tian, X. Sun, C. Sheng, P. He, S. Guo, H. Zhou, Angew. Chem. Int. Ed. Engl. 2023, 62, e202310143.

[14]

S. J. Banik, R. Akolkar, J. Electrochem. Soc. 2013, 160, D519.

[15]

A. Bani Hashemi, G. Kasiri, F. La Mantia, Electrochim. Acta 2017, 258, 703.

[16]

J. W. Gallaway, A. M. Gaikwad, B. Hertzberg, C. K. Erdonmez, Y.-C. K. Chen-Wiegart, L. A. Sviridov, K. Evans-Lutterodt, J. Wang, S. Banerjee, D. A. Steingart, J. Electrochem. Soc. 2013, 161, A275.

[17]

X. Wu, Y. Xia, S. Chen, Z. Luo, X. Zhang, Y. Lu, H. Pan, B. B. Xu, M. Yan, Y. Jiang, Small 2023. 20, e2306739.

[18]

X. Wang, K. Feng, B. Sang, G. Li, Z. Zhang, G. Zhou, B. Xi, X. An, S. Xiong, Adv. Energy Mater. 2023, 13, 202301670.

[19]

Y. Lin, Y. Li, Z. Mai, G. Yang, C. Wang, Adv. Energy Mater. 2023, 13, 202301999.

[20]

Y. Wang, R. Zhao, M. Liu, J. Yang, A. Zhang, J. Yue, C. Wu, Y. Bai, Adv. Energy Mater. 2023, 13, 202302707.

[21]

X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu, Z. Wang, Y. Wang, S. Zhang, T. Zheng, J. Liu, P. Rao, Z. Guo, Adv. Mater. 2021, 33, e2007416.

[22]

Y. Liu, J. Wang, J. Sun, F. Xiong, Q. Liu, Y. An, L. Shen, J. Wang, Q. An, L. Mai, J. Mater. Chem. A 2022, 10, 25029.

[23]

Y. Zhao, H. Liu, Y. Huyan, D. Lei, N. Li, S. Tian, J.-G. Wang, J. Energy Chem. 2023, 79, 450.

[24]

Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu, X. Song, Y. Ma, H. Xiang, Y. Huang, ACS Energy Lett. 2022, 8, 372.

[25]

D. Xie, Y. Sang, D. H. Wang, W. Y. Diao, F. Y. Tao, C. Liu, J. W. Wang, H. Z. Sun, J. P. Zhang, X. L. Wu, Angew. Chem. Int. Ed. Engl. 2023, 62, e202216934.

[26]

R. Yao, L. Qian, Y. Sui, G. Zhao, R. Guo, S. Hu, P. Liu, H. Zhu, F. Wang, C. Zhi, C. Yang, Adv. Energy Mater. 2021, 12, 202102780.

[27]

M. Luo, C. Wang, H. Lu, Y. Lu, B. B. Xu, W. Sun, H. Pan, M. Yan, Y. Jiang, Energy Storage Mater. 2021, 41, 515.

[28]

L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu, S.-X. Dou, S.-Z. Qiao, Energy Environ. Sci. 2021, 14, 5669.

[29]

T. Xiao, J. L. Yang, B. Zhang, J. Wu, J. Li, W. Mai, H. J. Fan, Angew. Chem. Int. Ed. Engl. 2024, 63, e202318470.

[30]

J. L. Yang, T. Xiao, T. Xiao, J. Li, Z. Yu, K. Liu, P. Yang, H. J. Fan, Adv. Mater. 2024, 36, 2313610.

[31]

J. L. Yang, L. L. Liu, Z. H. Yu, P. B. Chen, J. Li, P. A. Dananjaya, E. K. Koh, W. S. Lew, K. Liu, P. H. Yang, H. J. Fan, ACS Energy Lett. 2023, 8, 2042.

[32]

J. L. Yang, Z. H. Yu, J. W. Wu, J. Li, L. Y. Chen, T. Xiao, T. Xiao, D. Q. Cai, K. Liu, P. H. Yang, H. J. Fan, Adv. Mater. 2023, 35, 9.

[33]

J.-H. Lee, R. Kim, S. Kim, J. Heo, H. Kwon, J. H. Yang, H.-T. Kim, Energy Environ. Sci. 2020, 13, 2839.

[34]

H. T. Lu, X. L. Zhang, M. H. Luo, K. S. Cao, Y. H. Lu, B. B. Xu, H. G. Pan, K. Tao, Y. Z. Jiang, Adv. Funct. Mater. 2021, 31, 9.

[35]

J. L. Yang, J. Li, J. W. Zhao, K. Liu, P. H. Yang, H. J. Fan, Adv. Mater. 2022, 34, 202202382.

[36]

R. H. Jiang, T. Naren, Y. J. Chen, Z. Chen, C. X. Zhang, L. Ma, H. K. Xu, L. B. Chen, L. J. Zhou, W. F. Wei, Energy Storage Mater. 2023, 63, 9.

[37]

H. Tian, J. L. Yang, Y. R. Deng, W. H. Tang, R. P. Liu, C. Y. Xu, P. Han, H. J. Fan, Adv. Energy Mater. 2023, 13, 8.

[38]

X. Zhang, Z. Deng, C. Xu, Y. Deng, Y. Jia, H. Luo, H. Wu, W. Cai, Y. Zhang, Adv. Energy Mater. 2023, 13, 202302749.

[39]

H. Cao, X. Huang, Y. Liu, Q. Hu, Q. Zheng, Y. Huo, F. Xie, J. Zhao, D. Lin, J. Colloid Interface Sci. 2022, 627, 367.

[40]

Q. Gou, H. Luo, Y. Zheng, Q. Zhang, C. Li, J. Wang, O. Odunmbaku, J. Zheng, J. Xue, K. Sun, M. Li, Small 2022, 18, e2201732.

[41]

Y. Wu, N. Wang, H. Liu, R. Cui, J. Gu, R. Sun, Y. Zhu, L. Gou, X. Fan, D. Li, D. Wang, J. Colloid Interface Sci. 2023, 629, 916.

[42]

X. Gong, H. Yang, J. Wang, G. Wang, J. Tian, ACS Appl. Mater. Interfaces 2023, 15, 4152.

[43]

M. H. Alfaruqi, S. Islam, D. Y. Putro, V. Mathew, S. Kim, J. Jo, S. Kim, Y.-K. Sun, K. Kim, J. Kim, Electrochim. Acta 2018,

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/