In Situ Unraveling Surface Reconstruction of Ni-CoP Nanowire for Excellent Alkaline Water Electrolysis

Haiquan Liu , Sihang Hu , Baojun Long , Huan Dai , Yafei Yang , Menghua Yang , Qi Zhang , Zunjian Ke , Wenqing Li , Dong He , Ziyu Wang , Xiangheng Xiao

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12834

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12834 DOI: 10.1002/eem2.12834
RESEARCH ARTICLE

In Situ Unraveling Surface Reconstruction of Ni-CoP Nanowire for Excellent Alkaline Water Electrolysis

Author information +
History +
PDF

Abstract

The surface reconstruction behavior of transition metal phosphides precursors is considered as an important method to prepare efficient oxygen evolution catalysts, but there are still significant challenges in guiding catalyst design at the atomic scale. Here, the CoP nanowire with excellent water splitting performance and stability is used as a catalytic model to study the reconstruction process. Obvious double redox signals and valence evolution behavior of the Co site are observed, corresponding to Co2+/Co3+ and Co3+/Co4+ caused by auto-oxidation process. Importantly, the in situ Raman spectrum exhibits the vibration signal of Co–OH in the non-Faradaic potential interval for oxygen evolution reaction, which is considered the initial step in reconstruction process. Density functional theory and ab initio molecular dynamics are used to elucidate this process at the atomic scale: First, OH- exhibits a lower adsorption energy barrier and proton desorption energy barrier at the configuration surface, which proposes the formation of a single oxygen (–O) group. Under a higher –O group coverage, the Co–P bond is destroyed along with the POx groups. Subsequently, lower P vacancy formation energy confirm that the Ni-CoP configuration can fast transform into a highly active phase. Based on the optimized reconstruction behavior and rate-limiting barrier, the Ni-CoP nanowire exhibit an excellent overpotential of 1.59 V at 10 mA cm-2 for overall water splitting, which demonstrates low degradation (2.62%) during the 100 mA cm-2 for 100 h. This work provide systematic insights into the atomic-level reconstruction mechanism of transition metal phosphides, which benefit further design of water splitting catalysts.

Keywords

in situ Raman spectra / oxygen evolution reaction / phase transformation / surface reconstruction / transition metal phosphides

Cite this article

Download citation ▾
Haiquan Liu, Sihang Hu, Baojun Long, Huan Dai, Yafei Yang, Menghua Yang, Qi Zhang, Zunjian Ke, Wenqing Li, Dong He, Ziyu Wang, Xiangheng Xiao. In Situ Unraveling Surface Reconstruction of Ni-CoP Nanowire for Excellent Alkaline Water Electrolysis. Energy & Environmental Materials, 2025, 8(2): e12834 DOI:10.1002/eem2.12834

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Dubouis, D. Aymé-Perrot, D. Degoulange, A. Grimaud, H. Girault, Joule 2024,

[2]

Q. Liang, Q. Li, L. Xie, H. Zeng, S. Zhou, Y. Huang, M. Yan, X. Zhang, T. Liu, J. Zeng, K. Liang, O. Terasaki, D. Zhao, L. Jiang, B. Kong, ACS Nano 2022, 16, 7993.

[3]

L. Chong, G. Gao, J. Wen, H. Li, H. Xu, Z. Green, J. D. Sugar, A. J. Kropf, W. Xu, X. M. Lin, H. Xu, L. W. Wang, D. J. Liu, Science 2023, 380, 609.

[4]

X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong, Q. Wang, A. Borgna, Y. W. Zhang, Z. Wang, H. Wang, Z. G. Yu, W. S. V. Lee, J. Xue, Nature 2022, 611, 702.

[5]

P. Cui, T. Wang, X. Zhang, X. Wang, H. Wu, Y. Wu, C. Ba, Y. Zeng, P. Liu, J. Jiang, ACS Nano 2023, 17, 22268.

[6]

Y. Li, W. Wang, M. Cheng, Y. Feng, X. Han, Q. Qian, Y. Zhu, G. Zhang, Adv. Mater. 2023, 35, 2206351.

[7]

F. Y. Chen, Z. Y. Wu, Z. Adler, H. Wang, Joule 2021, 5, 1704.

[8]

Y. He, F. Yan, X. Zhang, C. Zhu, Y. Zhao, B. Geng, S. Chou, Y. Xie, Y. Chen, Adv. Energy Mater. 2023, 13, 2204177.

[9]

W. Zhai, Y. Chen, Y. Liu, T. Sakthivel, Y. Ma, Y. Qin, Y. Qu, Z. Dai, ACS Nano 2023, 17, 17254.

[10]

X. Wang, X. Xu, Y. Nie, R. Wang, J. Zou, Adv. Sci. 2023, 10, 2301961.

[11]

H. Wu, Z. Wang, Z. Li, Y. Ma, F. Ding, F. Li, H. Bian, Q. Zhai, Y. Ren, Y. Shi, Y. Yang, Y. Deng, S. Tang, X. Meng, Adv. Energy Mater. 2023, 13, 2300837.

[12]

D. He, X. Song, W. Li, C. Tang, J. Liu, Z. Ke, C. Jiang, X. Xiao, Angew. Chem. Int. Ed. 2020, 59, 6929.

[13]

L. Gao, C. Tang, J. Liu, L. He, H. Wang, Z. Ke, W. Li, C. Jiang, D. He, L. Cheng, X. Xiao, Energy Environ. Mater. 2021, 4, 392.

[14]

L. Fu, J. Zhou, Z. Zhou, B. Xiao, N. Khaorapapong, Y. Kang, K. Wu, Y. Yamauchi, ACS Nano 2023, 17, 22744.

[15]

Y. Li, X. Yu, J. Gao, Y. Ma, Chem. Eng. J. 2023, 470, 144373.

[16]

K. Wu, K. Sun, S. Liu, W. C. Cheong, Z. Chen, C. Zhang, Y. Pan, Y. Cheng, Z. Zhuang, X. Wei, Y. Wang, L. Zheng, Q. Zhang, D. Wang, Q. Peng, C. Chen, Y. Li, Nano Energy 2021, 80, 105467.

[17]

J. Y. Xie, Z. Z. Liu, J. Li, L. Feng, M. Yang, Y. Ma, D. P. Liu, L. Wang, Y. M. Chai, B. Dong, J. Energy Chem. 2020, 48, 328.

[18]

H. Wang, Y. Wang, J. Zhang, X. Liu, S. Tao, Nano Energy 2021, 84, 105943.

[19]

Y. Zhang, Z. X. Hui, H. Y. Zhou, S. F. Zai, Z. Wen, J. Li, C. C. Yang, Q. Jiang, Chem. Eng. J. 2022, 429, 132012.

[20]

S. F. Hung, Y. Zhu, G. Q. Tzeng, H. C. Chen, C. S. Hsu, Y. F. Liao, H. Ishii, N. Hiraoka, H. M. Chen, ACS Energy Lett. 2019, 4, 2813.

[21]

D. Xu, S. Liu, M. Zhang, L. Xu, H. Gao, J. Yao, Small 2023, 19, 2300201.

[22]

X. Zheng, B. Zhang, P. D. Luna, Y. Liang, R. Comin, O. Voznyy, L. Han, F. P. García de Arquer, M. Liu, C. T. Dinh, T. Regier, J. J. Dynes, S. He, H. L. Xin, H. Peng, D. Prendergast, X. Du, E. H. Sargent, Nat. Chem. 2018, 10, 149.

[23]

X. Ding, H. Huang, Q. Wan, X. Guan, Y. Fang, S. Lin, D. Chen, Z. Xie, J. Energy Chem. 2021, 62, 415.

[24]

T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun, L. Chen, ACS Catal. 2017, 7, 98.

[25]

Y. N. Zhou, W. H. Hu, Y. N. Zhen, B. Dong, Y. W. Dong, R. Y. Fan, B. Liu, D. P. Liu, Y. M. Chai, Appl. Catal. B Environ. 2022, 309, 121230.

[26]

L. Zhang, J. Zhang, J. Fang, X. Y. Wang, L. Yin, W. Zhu, Z. Zhuang, Small 2021, 17, 2100832.

[27]

G. Zhou, M. Li, Y. Li, H. Dong, D. Sun, X. Liu, L. Xu, Z. Tian, Y. Tang, Adv. Funct. Mater. 2020, 30, 1905252.

[28]

Y. Gao, S. Qian, H. Wang, W. Yuan, Y. Fan, N. Cheng, H. Xue, T. Jiang, J. Tian, Appl. Catal. B Environ. 2023, 320, 122014.

[29]

Y. Sun, W. Sun, L. Chen, A. Meng, G. Li, L. Wang, J. Huang, A. Song, Z. Zhang, Z. Li, Nano Res. 2023, 16, 228.

[30]

H. Song, M. Wu, Z. Tang, J. S. Tse, B. Yang, S. Lu, Angew. Chem. Int. Ed. 2021, 60, 7234.

[31]

Z. Dai, X. Du, X. Zhang, J. Alloys Compd. 2023, 946, 169451.

[32]

H. Yang, Z. Zhou, H. Yu, H. Wen, R. Yang, S. Peng, M. Sun, L. Yu, J. Colloid Interface Sci. 2023, 636, 11.

[33]

S. Sk, R. Madhu, D. S. Gavali, V. Bhasin, R. Thapa, S. N. Jha, D. Bhattacharyya, S. Kundu, U. Pal, J. Mater. Chem. A 2023, 11, 10309.

[34]

A. Moysiadou, S. Lee, C. S. Hsu, H. M. Chen, X. Hu, J. Am. Chem. Soc. 2020, 142, 11901.

[35]

Y. Hu, C. Hu, A. Du, T. Xiao, L. Yu, C. Yang, W. Xie, Anal. Chem. 2023, 95, 1703.

[36]

Z. Chen, L. Cai, X. Yang, C. Kronawitter, L. Guo, S. Shen, B. E. Koel, ACS Catal. 2018, 8, 1238.

[37]

W. H. Lee, M. H. Han, Y. J. Ko, B. K. Min, K. H. Chae, H. S. Oh, Nat. Commun. 2022, 13, 605.

[38]

N. Yao, G. Wang, H. Jia, J. Yin, H. Cong, S. Chen, W. Luo, Angew. Chem. Int. Ed. 2022, 61, e202117178.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/