Silica Gel Supported Solid Amine Sorbents for CO2 Capture

Baljeet Singh , Zahra Eshaghi Gorji , Rustam Singh , Vikas Sharma , Timo Repo

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12832

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12832 DOI: 10.1002/eem2.12832
REVIEW

Silica Gel Supported Solid Amine Sorbents for CO2 Capture

Author information +
History +
PDF

Abstract

Point source CO2 capture (PSCC) is crucial for decarbonizing various industrial sectors, while direct air capture (DAC) holds promise for removing CO2 directly from the air. Sorbents play a critical role in both technologies, with their performances, efficiency, cost, etc., largely depending on which type is used (physical or chemical). Solid amine sorbents (SAS) employed in the chemical adsorption of CO2 are suitable for both PSCC and DAC. SAS offer significant advantages over liquid amines such as monoethanolamine (MEA), due to their ability to perform cyclic adsorption–desorption with much lower energy requirement. The environmental concern associated with MEA can be mitigated by SAS. Support materials have a significantly important role in stabilizing amine and enhancing stability and kinetics; varieties of support materials have been screened at a laboratory scale. One promising support material is a silica gel (SG), which is commercially available and attractive for designing cost-effective sorbents for large-scale CO2 capture. Various impregnation methods such as physical adsorption and covalent functionalization have been employed to functionalize silica surfaces with amines. This review provided a comprehensive critical analysis of SG-based SAS for CO2 capture. We discussed and evaluated them in terms of their adsorption capacity, adsorption, and desorption conditions, and the kinetics involved in these processes. Finally, we proposed a few recommendations for further development of low-cost, lower carbon footprint SAS for large-scale deployment of CO2 capture technology.

Keywords

direct air capture / point source CO 2 capture / silica gel / solid amine sorbent

Cite this article

Download citation ▾
Baljeet Singh, Zahra Eshaghi Gorji, Rustam Singh, Vikas Sharma, Timo Repo. Silica Gel Supported Solid Amine Sorbents for CO2 Capture. Energy & Environmental Materials, 2025, 8(1): e12832 DOI:10.1002/eem2.12832

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Honegger, Nat. Commun. 2023, 14, 534.

[2]

Y. Jiang, P. M. Mathias, R. F. Zheng, C. J. Freeman, D. Barpaga, D. Malhotra, P. K. Koech, A. Zwoster, D. J. Heldebrant, J. Clean. Prod. 2023, 388, 135696.

[3]

J. Gibbins, H. Chalmers, M. Lucquiaud, J. Li, N. McGlashan, X. Liang, J. Davison, Energy Procedia 2011, 4, 1835.

[4]

A. Richard, C. D. J. Betts, J. R. Knight, J. O. Pope, C. Sandford, Mauna Loa carbon dioxide forecast for 2024: Atmospheric CO2 rise predicted to exceed IPCC 1.5°C scenarios. https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/forecasts/co2-forecast-for-2024

[5]

M. W. Jones, G. P. Peters, T. Gasser, R. M. Andrew, C. Schwingshackl, J. Gütschow, R. A. Houghton, P. Friedlingstein, J. Pongratz, C. Le Quéré, Scientific Data 2023, 10, 155.

[6]

X. Lan, P. Tans, K. W. Thoning, Trends in globally-averaged CO2 determined from NOAA 16 Global Monitoring Laboratory measurements, 10.15138/9N0H-ZH07, accessed: December, 2024.

[7]

H. C. Lau, S. Ramakrishna, K. Zhang, A. V. Radhamani, Energy Fuel 2021, 35, 7364.

[8]

B. Singh, M. Kemell, and T. Repo, Mater. Adv. 2024.

[9]

M. R. Ketabchi, S. Babamohammadi, W. G. Davies, M. Gorbounov, S. Masoudi Soltani, Carbon Capture Sci. Technol. 2023, 6, 100087.

[10]

R. Chang, X. Wu, O. Cheung, W. Liu, J. Mat. Chem. A 2022, 10, 1682.

[11]

J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hare, Z. Zhong, Energy Environ. Sci. 2014, 7, 3478.

[12]

A. Sodiq, Y. Abdullatif, B. Aissa, A. Ostovar, N. Nassar, M. El-Naas, A. Amhamed, Environ. Technol. Innov. 2023, 29, 102991.

[13]

Y. Abdullatif, A. Sodiq, N. Mir, Y. Bicer, T. Al-Ansari, M. H El-Naas, A. I. Amhamed, RSC Adv. 2023, 13, 5687.

[14]

F. Raganati, F. Miccio, P. Ammendola, Energy Fuel 2021, 35, 12845.

[15]

A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 2012, 51, 1438.

[16]

F. O. Ochedi, J. Yu, H. Yu, Y. Liu, A. Hussain, Environ. Chem. Lett. 2021, 19, 77.

[17]

W. Yu, T. Wang, A.-H. A. Park, M. Fang, Nanoscale 2019, 11, 17137.

[18]

N. Hussain Solangi, F. Hussin, A. Anjum, N. Sabzoi, S. Ali Mazari, N. M. Mubarak, M. Kheireddine Aroua, M. T. H. Siddiqui, S. Saeed Qureshi, J. Mol. Liq. 2023, 374, 121266.

[19]

B. Aghel, S. Janati, S. Wongwises, M. S. Shadloo, Int. J. Greenhouse Gas Control 2022, 119, 103715.

[20]

S. Sun, H. Sun, P. T. Williams, C. Wu, Sustain. Energy Fuels 2021, 5, 4546.

[21]

E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, C. W. Jones, Chem. Rev. 2016, 116, 11840.

[22]

E. E. Ünveren, B. Ö. Monkul, Ş. Sarıoğlan, N. Karademir, E. Alper, Petroleum 2017, 3, 37.

[23]

M. T. Dunstan, F. Donat, A. H. Bork, C. P. Grey, C. R. Müller, Chem. Rev. 2021, 121, 12681.

[24]

L. Shi, L. S. Lai, W. H. Tay, S. P. Yeap, Y. F. Yeong, ChemBioEng Rev. 2022, 9, 556.

[25]

N. Norahim, P. Yaisanga, K. Faungnawakij, T. Charinpanitkul, C. Klaysom, Chem. Eng. Technol. 2018, 41, 211.

[26]

Y. Han, W. S. W. Ho, J. Membr. Sci. 2021, 628, 119244.

[27]

G. Chen, T. Wang, G. Zhang, G. Liu, W. Jin, Adv. Membr. 2022, 2, 100025.

[28]

S. Fujikawa, R. Selyanchyn, T. Kunitake, Polym. J. 2021, 53, 111.

[29]

R. Ben-Mansour, M. A. Habib, O. E. Bamidele, M. Basha, N. A. A. Qasem, A. Peedikakkal, T. Laoui, M. Ali, Appl. Energy 2016, 161, 225.

[30]

A. H. Berger, A. S. Bhown, Energy Procedia 2011, 4, 562.

[31]

R.-S. Liu, X.-D. Shi, C.-T. Wang, Y.-Z. Gao, S. Xu, G.-P. Hao, S. Chen, A.-H. Lu, ChemSusChem 2021, 14, 1428.

[32]

M. M. Yassin, J. A. Anderson, G. A. Dimitrakis, C. F. Martín, Sep. Purif. Technol. 2021, 276, 119326.

[33]

Z. Cui, Q. Du, J. Gao, R. Bie, Appl. Therm. Eng. 2023, 230, 120834.

[34]

X. Chen, J. Wang, T. Ren, Z. Li, T. Du, X. Lu, L. Liu, Y. Wang, D. Xu, C. Chang, W. Tan, G. K. Li, Sep. Purif. Technol. 2023, 308, 122837.

[35]

F. Su, C. Lu, Energy Environ. Sci. 2012, 5, 9021.

[36]

A. Ntiamoah, J. Ling, P. Xiao, P. A. Webley, Y. Zhai, Ind. Eng. Chem. Res. 2016, 55, 703.

[37]

M. J. Bos, V. Kroeze, S. Sutanto, D. W. F. Brilman, Ind. Eng. Chem. Res. 2018, 57, 11141.

[38]

G. Ji, H. Yang, M. Z. Memon, Y. Gao, B. Qu, W. Fu, G. Olguin, M. Zhao, A. Li, Appl. Energy 2020, 267, 114874.

[39]

S. Wang, Y. Li, Z. Li, Ind. Eng. Chem. Res. 2020, 59, 6855.

[40]

A. Abdollahi-Govar, A. D. Ebner, J. A. Ritter, Energy Fuel 2015, 29, 4492.

[41]

M. J Al-Marri, Y. O. Kuti, M. Khraisheh, A. Kumar, M. M. Khader, Chem. Eng. Technol. 2017, 40, 1802.

[42]

N. Masoud, G. Bordanaba-Florit, T. van Haasterecht, J. H. Bitter, Ind. Eng. Chem. Res. 2021, 60, 13749.

[43]

K. Maresz, A. Ciemięga, J. J. Malinowski, J. Mrowiec-Białoń, Chem. Eng. J. 2020, 383, 123175.

[44]

S. J. Vevelstad, V. Buvik, H. K. Knuutila, A. Grimstvedt, E. F. da Silva, Ind. Eng. Chem. Res. 2022, 61, 15737.

[45]

Y. Ding, L. Ma, F. Zeng, X. Zhao, H. Wang, X. Zhu, Q. Liao, Energy 2023, 263, 125723.

[46]

F. Rezaei, C. W. Jones, Ind. Eng. Chem. Res. 2013, 52, 12192.

[47]

J. Yu, S. S. C. Chuang, Ind. Eng. Chem. Res. 2017, 56, 6337.

[48]

J. Yu, Y. Zhai, S. S. C. Chuang, Ind. Eng. Chem. Res. 2018, 57, 4052.

[49]

R. Veneman, N. Frigka, W. Zhao, Z. Li, S. Kersten, W. Brilman, Int. J Greenhouse Gas Control 2015, 41, 268.

[50]

J. Young, E. García-Díez, S. Garcia, M. van der Spek, Environ. Sci. 2021, 14, 5377.

[51]

C. Drechsler, D. W. Agar, Energy 2020, 192, 116587.

[52]

K. Fu, M. Zheng, H. Wang, D. Fu, Energy 2022, 244, 122656.

[53]

J. M. Kolle, M. Fayaz, A. Sayari, Chem. Rev. 2021, 121, 7280.

[54]

R. Belgamwar, A. Maity, T. Das, S. Chakraborty, C. P. Vinod, V. Polshettiwar, Chem. Sci. 2021, 12, 4825.

[55]

W. Zhao, Z. Zhang, Z. Li, N. Cai, Ind. Eng. Chem. Res. 2013, 52, 2084.

[56]

R. A. Khatri, S. S. C. Chuang, Y. Soong, M. Gray, Energy Fuel 2006, 20, 1514.

[57]

S. G. Subraveti, S. Roussanaly, R. Anantharaman, L. Riboldi, A. Rajendran, Appl. Energy 2022, 306, 117955.

[58]

J. F. Wiegner, A. Grimm, L. Weimann, M. Gazzani, Ind. Eng. Chem. Res. 2022, 61, 12649.

[59]

B. Singh, J. Na, M. Konarova, T. Wakihara, Y. Yamauchi, C. Salomon, M. B. Gawande, Bull. Chem. Soc. Jpn. 2020, 93, 1459.

[60]

B. Singh, V. Polshettiwar, J. Mater. Chem. A 2016, 4, 7005.

[61]

N. Bayal, B. Singh, R. Singh, V. Polshettiwar, Sci. Rep. 2016, 6, 24888.

[62]

B. Singh, V. Polshettiwar, Nanoscale 2019, 11, 5365.

[63]

B. Singh, A. Maity, V. Polshettiwar, ChemistrySelect 2018, 3, 10684.

[64]

X. Shen, H. Du, R. H. Mullins, R. R. Kommalapati, Energy 2017, 5, 822.

[65]

Y. Fan, X. Jia, Energy Fuel 2022, 36, 1252.

[66]

J. D. Lunn, D. F. Shantz, Chem. Mater. 2009, 21, 3638.

[67]

S. A. Didas, S. Choi, W. Chaikittisilp, C. W. Jones, Acc. Chem. Res. 2015, 48, 2680.

[68]

D. J. Fauth, M. L. Gray, H. W. Pennline, H. M. Krutka, S. Sjostrom, A. M. Ault, Energy Fuel 2012, 26, 2483.

[69]

D. S. Dao, H. Yamada, K. Yogo, Ind. Eng. Chem. Res. 2013, 52, 13810.

[70]

C. Chen, S. Bhattacharjee, Greenhouse Gases Sci. Technol. 2017, 7, 1116.

[71]

Y. G. Ko, S. S. Shin, U. S. Choi, J. Colloid Interface Sci. 2011, 361, 594.

[72]

Y. Teng, Z. Liu, G. Xu, K. Zhang, Energies 2017, 10, 115.

[73]

C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air Qual. Res. 2012, 12, 745.

[74]

K. Wang, H. Shang, L. Li, X. Yan, Z. Yan, C. Liu, Q. Zha, J. Nat. Gas Chem. 2012, 21, 319.

[75]

D. Wang, C. Sentorun-Shalaby, X. Ma, C. Song, Energy Fuel 2011, 25, 456.

[76]

X. Yan, Y. Zhang, K. Qiao, X. Li, Z. Zhang, Z. Yan, S. Komarneni, J. Hazard. Mater. 2011, 192, 1505.

[77]

J. Hack, N. Maeda, D. M. Meier, ACS Omega 2022, 7, 39520.

[78]

Y. Shi, Q. Liu, Y. He, in Handbook of Climate Change Mitigation and Adaptation (Eds: W.-Y. Chen, T. Suzuki, M. Lackner), Springer New York, New York, NY 2014, p. 1.

[79]

Z. Zhang, X. Ma, D. Wang, C. Song, Y. Wang, AIChE J 2012, 58, 2495.

[80]

B. Singh, K. R. Mote, C. S. Gopinath, P. K. Madhu, V. Polshettiwar, Angew. Chem. Int. Ed. 2015, 54, 5985.

[81]

B. Singh, V. Polshettiwar, Pure Appl. Chem. 2023, 95, 451.

[82]

C. F. Martín, M. B. Sweatman, S. Brandani, X. Fan, Appl. Energy 2016, 183, 1705.

[83]

G. D. Pirngruber, S. Cassiano-Gaspar, S. Louret, A. Chaumonnot, B. Delfort, Energy Procedia 2009, 1, 1335.

[84]

J.-T. Anyanwu, Y. Wang, R. T. Yang, Ind. Eng. Chem. Res. 2020, 59, 7072.

[85]

H. Jung, C. H. Lee, S. Jeon, D. H. Jo, J. Huh, S. H. Kim, Adsorption 2016, 22, 1137.

[86]

N. N. Linneen, R. Pfeffer, Y. S. Lin, Chem. Eng. J. 2014, 254, 190.

[87]

X. Jiang, Y. Kong, Z. Zhao, X. Shen, RSC Adv. 2020, 10, 25911.

[88]

N. Minju, P. Abhilash, B. N. Nair, A. P. Mohamed, S. Ananthakumar, Chem. Eng. J. 2015, 269, 335.

[89]

N. N. Linneen, R. Pfeffer, Y. S. Lin, Ind. Eng. Chem. Res. 2013, 52, 14671.

[90]

Z. Wang, Z. Dai, J. Wu, N. Zhao, J. Xu, Adv. Mater. 2013, 25, 4494.

[91]

K. Wörmeyer, I. Smirnova, Microporous Mesoporous Mater. 2014, 184, 61.

[92]

K. Wörmeyer, M. Alnaief, I. Smirnova, Adsorption 2012, 18, 163.

[93]

K. Wörmeyer, I. Smirnova, Chem. Eng. J. 2013, 225, 350.

[94]

Z. Zhang, S. Zhao, Z. Fei, K. Li, G. Chen, J. Chen, P. Zhang, Z. Yang, ACS Appl. Nano Mater. 2023, 6, 1927.

[95]

Y. Kong, X. Shen, M. Fan, M. Yang, S. Cui, Chem. Eng. J. 2016, 283, 1059.

[96]

Y. Kong, G. Jiang, Y. Wu, S. Cui, X. Shen, Chem. Eng. J. 2016, 306, 362.

[97]

Y. Kong, X. Shen, S. Cui, Microporous Mesoporous Mater. 2016, 236, 269.

[98]

Y. Kong, X. Shen, S. Cui, M. Fan, Green Chem. 2015, 17, 3436.

[99]

Y. Kong, X. Shen, S. Cui, M. Fan, Appl. Energy 2015, 147, 308.

[100]

A. A. Alhwaige, T. Agag, H. Ishida, S. Qutubuddin, RSC Adv. 2013, 3, 16011.

[101]

A. A. Alhwaige, H. Ishida, S. Qutubuddin, ACS Sustain. Chem. Eng. 2016, 4, 1286.

[102]

S. Choi, M. L. Gray, C. W. Jones, ChemSusChem 2011, 4, 628.

[103]

N. Linneen, R. Pfeffer, Y. S. Lin, Microporous Mesoporous Mater. 2013, 176, 123.

[104]

Y. Kong, G. Jiang, M. Fan, X. Shen, S. Cui, A. G. Russell, Chem. Commun. 2014, 50, 12158.

[105]

Y. Kong, G. Jiang, M. Fan, X. Shen, S. Cui, RSC Adv. 2014, 4, 43448.

[106]

Y. Miao, M. Pudukudy, Y. Zhi, Y. Miao, S. Shan, Q. Jia, Y. Ni, Carbohydr. Polym. 2020, 236, 116079.

[107]

M. Bisht, B. Bhawna, B. Singh, S. Pandey, J. Mol. Liq. 2023, 384, 122203.

[108]

Z. Ghazali, N. Suhaili, M. N. A. Tahari, M. A. Yarmo, N. H. Hassan, R. Othaman, J. Mater. Res. Technol. 2020, 9, 3249.

[109]

G. Zhang, P. Zhao, Y. Xu, Z. Yang, H. Cheng, Y. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 34340.

[110]

Z. Liu, Y. Teng, K. Zhang, H. Chen, Y. Yang, J. Energy Chem. 2015, 24, 322.

[111]

A. Goeppert, H. Zhang, R. Sen, H. Dang, G. K. S. Prakash, ChemSusChem 2019, 12, 1712.

[112]

W. Choi, K. Min, C. Kim, Y. S. Ko, J. W. Jeon, H. Seo, Y.-K. Park, M. Choi, Nat. Commun. 2016, 7, 12640.

[113]

H. E. Holmes, R. P. Lively, M. J. Realff, JACS Au 2021, 1, 795.

[114]

A. Heydari-Gorji, Y. Yang, A. Sayari, Energy Fuel 2011, 25, 4206.

[115]

G. Leonzio, O. Mwabonje, P. S. Fennell, N. Shah, Sustain. Prod. Consum. 2022, 32, 101.

[116]

B. Singh, M. Kemell, J. Yliniemi, T. Repo, Nanoscale 2024.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/