Silica Gel Supported Solid Amine Sorbents for CO2 Capture
Baljeet Singh , Zahra Eshaghi Gorji , Rustam Singh , Vikas Sharma , Timo Repo
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12832
Silica Gel Supported Solid Amine Sorbents for CO2 Capture
Point source CO2 capture (PSCC) is crucial for decarbonizing various industrial sectors, while direct air capture (DAC) holds promise for removing CO2 directly from the air. Sorbents play a critical role in both technologies, with their performances, efficiency, cost, etc., largely depending on which type is used (physical or chemical). Solid amine sorbents (SAS) employed in the chemical adsorption of CO2 are suitable for both PSCC and DAC. SAS offer significant advantages over liquid amines such as monoethanolamine (MEA), due to their ability to perform cyclic adsorption–desorption with much lower energy requirement. The environmental concern associated with MEA can be mitigated by SAS. Support materials have a significantly important role in stabilizing amine and enhancing stability and kinetics; varieties of support materials have been screened at a laboratory scale. One promising support material is a silica gel (SG), which is commercially available and attractive for designing cost-effective sorbents for large-scale CO2 capture. Various impregnation methods such as physical adsorption and covalent functionalization have been employed to functionalize silica surfaces with amines. This review provided a comprehensive critical analysis of SG-based SAS for CO2 capture. We discussed and evaluated them in terms of their adsorption capacity, adsorption, and desorption conditions, and the kinetics involved in these processes. Finally, we proposed a few recommendations for further development of low-cost, lower carbon footprint SAS for large-scale deployment of CO2 capture technology.
direct air capture / point source CO 2 capture / silica gel / solid amine sorbent
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |