Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction

Jiyoung Kim , JeongEun Yoo , Kiyoung Lee

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12827

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12827 DOI: 10.1002/eem2.12827
RESEARCH ARTICLE

Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction

Author information +
History +
PDF

Abstract

Water electrolysis using renewable electricity is a promising strategy for high-purity hydrogen production. To realize the practical application of water electrolysis, an electrocatalyst with high redox properties and low cost is essential for enhancing the sluggish oxygen evolution reaction. Herein, we fabricated Fe-doped nickel oxalate (Fe-NiC2O4) directly grown on nickel (Ni) foam as an efficient electrocatalyst for the alkaline oxygen evolution reaction using a facile one-step hydrothermal method. Fe-NiC2O4 served as a precursor for obtaining highly active Fe-doped Ni oxyhydroxide (Fe-NiOOH) via in situ electrochemical oxidation. Consequently, 0.75Fe-NiOOH was demonstrated to be the optimal electrocatalyst, exhibiting outstanding oxygen evolution reaction activity with a low overpotential of 220 mV at a current density of 100 mA cm-2 and a Tafel slope of 20.5 mV dec-1. Furthermore, Fe-NiOOH maintained its oxygen evolution reaction activity without performance decay during long-term electrochemical measurements, owing to the phase transformation from nickel oxyhydroxide (NiOOH) to γ-NiOOH (gamma nickel oxyhydroxide). These performances significantly surpass those of recently reported transition-metal-based electrocatalysts.

Keywords

electrocatalysts / Fe-doped NiC 2O 4 / Fe-doped NiOOH / OER / water electrolysis

Cite this article

Download citation ▾
Jiyoung Kim, JeongEun Yoo, Kiyoung Lee. Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction. Energy & Environmental Materials, 2025, 8(2): e12827 DOI:10.1002/eem2.12827

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Liu, S. Liu, Y. Wang, Q. Zhang, L. Gu, S. Zhao, D. Xu, Y. Li, J. Bao, Z. Dai, J. Am. Chem. Soc. 2018, 140, 2731.

[2]

K. P. Brooks, S. J. Sprik, D. A. Tamburello, M. J. Thornton, Int. J. Hydrogen Energy 2020, 45, 24917.

[3]

M. F. Lagadec, A. Grimaud, Nat. Mater. 2020, 19, 1140.

[4]

K. Wang, X. Wang, Z. Li, B. Yang, M. Ling, X. Gao, J. Lu, Q. Shi, L. Lei, G. Wu, Y. Hou, Nano Energy 2020, 77, 105162.

[5]

H. S. Chavan, J. E. Yoo, D. R. Patil, J. Kim, Y. Choi, K. Lee, J. Alloys Compd. 2024, 15, 174911.

[6]

Y. N. Zhou, W. L. Yu, Y. N. Cao, J. Zhao, B. Dong, Y. Ma, F. L. Wang, R. Y. Fan, Y. L. Zhou, Y. M. Chai, Appl. Catal. Environ. 2021, 292, 120150.

[7]

R. Y. Fan, J. Y. Xie, H. J. Liu, H. Y. Wang, M. X. Li, N. Yu, R. N. Luan, Y. M. Chai, B. Dong, Chem. Eng. J. 2022, 431, 134040.

[8]

N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.

[9]

K. Ham, J. Lee, K. Lee, J. Lee, J. Energy Chem. 2022, 71, 580.

[10]

Y. Pi, Q. Shao, P. Wang, F. Lv, S. Guo, J. Guo, X. Huang, Angew. Chem. 2017, 129, 4573.

[11]

J. Ha, M. Kim, Y. T. Kim, J. Choi, ACS Appl. Mater. Interfaces 2021, 13, 42870.

[12]

D. Lim, K. Min, M. Hwang, H. C. Ham, G. J. Kim, S. H. Baeck, Mol. Catal. 2021, 509, 111614.

[13]

Y. Li, J. Liu, S. Li, S. Peng, ACS Catal. 2024, 14, 4807.

[14]

I. J. Godwin, M. E. G. Lyons, Electrochem. Commun. 2013, 32, 39.

[15]

O. Diaz-Morales, D. Ferrus-Suspedra, M. T. M. Koper, Chem. Sci. 2016, 7, 2639.

[16]

A. Govind Rajan, J. M. P. Martirez, E. A. Carter, J. Am. Chem. Soc. 2020, 142, 3600.

[17]

Y.-F. Li, J.-L. Li, Z.-P. Liu, J. Phys. Chem. C 2021, 125, 27033.

[18]

L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744.

[19]

M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329.

[20]

M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2013, 135, 8452.

[21]

C. Kuai, Y. Zhang, D. Wu, D. Sokaras, L. Mu, S. Spence, D. Nordlund, F. Lin, X. W. Du, ACS Catal. 2019, 9, 6027.

[22]

W. Xu, C. Zhang, H. Shen, X. Ma, Z. Cheng, J. Wu, Q. Zhu, J. Lin, Z. Fu, H. Deng, ACS Sustain. Chem. Eng. 2022, 10, 14396.

[23]

X. Lu, C. Zhao, Nat. Commun. 2015, 6, 6616.

[24]

R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550.

[25]

W. Chen, G. B. Huang, H. Song, J. Zhang, J. Mater. Chem. A 2020, 8, 20963.

[26]

P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Figlarz, F. Fievet, A. de Guibert, J. Power Sources 1982, 8, 229.

[27]

H. Yang, Z. Cheng, P. Wu, Y. Wei, J. Jiang, Q. Xu, Electrochim. Acta 2022, 427, 140879.

[28]

J. S. Yeoh, C. F. Armer, A. Lowe, Mater. Today Energy 2018, 9, 198.

[29]

W. Da Zhang, H. Yu, T. Li, Q. T. Hu, Y. Gong, D. Y. Zhang, Y. Liu, Q. T. Fu, H. Y. Zhu, X. Yan, Z. G. Gu, Appl. Catal. Environ. 2020, 264, 118532.

[30]

P. Babar, K. Patil, V. Karade, K. Gour, A. Lokhande, S. Pawar, J. H. Kim, ACS Appl. Mater. Interfaces 2021, 13, 52620.

[31]

C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri, X. Sun, Adv. Mater. 2017, 29, 1602441.

[32]

C. Yang, T. He, W. Zhou, R. Deng, Q. Zhang, A. C. S. Sustain, Chem. Eng. 2020, 8, 13793.

[33]

X. Gao, D. Chen, J. Qi, F. Li, Y. Song, W. Zhang, R. Cao, Small 2019, 15(46), 1.

[34]

X. Qiao, H. Kang, Y. Li, K. Cui, X. Jia, X. Wu, W. Qin, Small 2022, 18(10), 1.

[35]

X. Wang, P. He, Y. Yang, F. Zhang, J. Tang, R. Que, Electrochim. Acta 2020, 345, 136228.

[36]

H. Li, Y. Sun, J. Wang, Y. Liu, C. Li, Appl. Catal. B-Environ. 2022, 307, 121136.

[37]

J. Li, F. Liu, M. Yu, H. Hu, H. Liu, F. Cheng, J. Phys. Chem. C 2021, 125, 25383.

[38]

T. Tang, L. Zeng, Y. Liang, S. Jiang, R. Dong, X. Xu, F. Wang, J. Energy Storage 2023, 73, 109132.

[39]

D. Phihusut, J. D. Ocon, B. Jeong, J. W. Kim, J. K. Lee, J. Lee, Electrochim. Acta 2014, 140, 404.

[40]

M. Salavati-Niasari, N. Mir, F. Davar, J. Alloys Compd. 2009, 476, 908.

[41]

X. Liu, J. Jiang, L. Ai, J. Mater. Chem. A 2015, 3, 9707.

[42]

X. Qiao, T. Zhao, B. Guo, F. Sha, F. Zhang, X. Xie, J. Zhang, J. Chem. Eng. Data 2016, 61, 1597.

[43]

X. Liu, L. Yu, J. Power Sources 2004, 128, 326.

[44]

R. L. Frost, M. L. Weier, J. Raman Spectrosc. 2003, 34, 776.

[45]

J. Chi, H. Yu, B. Qin, L. Fu, J. Jia, B. Yi, Z. Shao, ACS Appl. Mater. Interfaces 2017, 9, 464.

[46]

J. Jia, X. Guo, T. Zhang, F. Zha, X. Tang, H. Tian, Appl. Catal. A. Gen. 2022, 630, 118427.

[47]

C. W. Hu, Y. Yamada, K. Yoshimura, Sol. Energy Mater. Sol. Cells 2018, 177, 120.

[48]

J. Wang, J. Li, M. Wang, Y. Liu, H. Cui, Sustain. Energy Fuel 2020, 4, 1780.

[49]

L. Xia, W. Jiang, H. Hartmann, J. Mayer, W. Lehnert, M. Shviro, ACS Appl. Mater. Interfaces 2022, 14, 19397.

[50]

Z. Lin, Z. Wang, J. Gong, T. Jin, S. Shen, Q. Zhang, J. Wang, W. Zhong, Adv. Funct. Mater. 2023, 33, 2307510.

[51]

S. Kumaravel, R. Jayakumar, K. K. Saravanan, V. Niharika, B. Eunice Evangeline, V. Singaram, S. Kundu, Dalton Trans. 2022, 30, 17454.

[52]

Y. Sun, J. Wu, Y. Xie, X. Wang, K. Ma, Z. Tian, Z. Zhang, Q. Liao, W. Zheng, Z. Kang, Y. Zhang, Adv. Funct. Mater. 2022, 32, 2207116.

[53]

F. Zhan, Y. Yang, W. Liu, D. Wang, W. Li, J. Li, ACS Sustain. Chem. Eng. 2018, 6, 7789.

[54]

S. Klaus, Y. Cai, M. W. Louie, L. Trotochaud, A. T. Bell, J. Phys. Chem. C 2015, 119, 7243.

[55]

Y. Li, Y. Wu, M. Yuan, H. Hao, Z. Lv, L. Xu, B. Wei, Appl. Catal. Environ. 2022, 318, 121525.

[56]

C.-F. Li, L.-J. Xie, J.-W. Zhao, L.-F. Gu, H.-B. Tang, L. Zheng, G.-R. Li, Angew. Chem. Int. Ed. 2022, 61, e202116934.

[57]

M. Cai, Q. Zhu, X. Wang, Z. Shao, L. Yao, H. Zeng, X. Wu, J. Chen, K. Huang, S. Feng, Adv. Mater. 2023, 35, 2209338.

[58]

Q. Yang, L. Yu, X. Zhao, Y. Wang, H. Zhu, Y. Zhang, Int. J. Hydrogen Energy 2022, 47, 27516.

[59]

P. W. Menezes, S. Yao, R. Beltrán-Suito, J. N. Hausmann, P. V. Menezes, M. Driess, Angew. Chem. 2021, 133, 4690.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/