A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics

Dong Il Kim , Hee Bin Jeong , Jungmoon Lim , Hyeong Seop Jeong , Min Kyeong Kim , Sangyeon Pak , Sanghyo Lee , Geon-Hyoung An , Sang-Soo Chee , Jin Pyo Hong , Seung Nam Cha , John Hong

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12826

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12826 DOI: 10.1002/eem2.12826
RESEARCH ARTICLE

A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics

Author information +
History +
PDF

Abstract

Achieving high-performance aqueous zinc-ion batteries requires addressing the challenges associated with the stability of zinc metal anodes, particularly the formation of inhomogeneous zinc dendrites during cycling and unstable surface electrochemistry. This study introduces a practical method for scattering untreated bulk hexagonal boron nitride (h-BN) particles onto the zinc anode surface. During cycling, stabilized zinc fills the interstices of scattered h-BN, resulting in a more favorable (002) orientation. Consequently, zinc dendrite formation is effectively suppressed, leading to improved electrochemical stability. The zinc with scattered h-BN in a symmetric cell configuration maintains stability 10 times longer than the bare zinc symmetric cell, lasting 500 hours. Furthermore, in a full cell configuration with α-MnO2 cathode, increased H+ ion activity can effectively alter the major redox kinetics of cycling due to the presence of scattered h-BN on the zinc anode. This shift in H+ ion activity lowers the overall redox potential, resulting in a discharge capacity retention of 96.1% for 300 cycles at a charge/discharge rate of 0.5 A g-1. This study highlights the crucial role of surface modification, and the innovative use of bulk h-BN provides a practical and effective solution for improving the performance and stability.

Keywords

aqueous zinc ion batteries / H + ion insertion / hexagonal boron nitride / scattering / Zn metal anode

Cite this article

Download citation ▾
Dong Il Kim, Hee Bin Jeong, Jungmoon Lim, Hyeong Seop Jeong, Min Kyeong Kim, Sangyeon Pak, Sanghyo Lee, Geon-Hyoung An, Sang-Soo Chee, Jin Pyo Hong, Seung Nam Cha, John Hong. A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics. Energy & Environmental Materials, 2025, 8(2): e12826 DOI:10.1002/eem2.12826

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Han, W. Li, H. K. Liu, S. Dou, J. Wang, Nano Energy 2020, 74, 104880.

[2]

M. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564.

[3]

J. Ming, J. Guo, C. Xia, W. Wang, H. N. Alshareef, Mater. Sci. Eng. R 2019, 135, 58.

[4]

B. Tang, L. Shan, S. Liang, J. Zhou, Energ. Environ. Sci. 2019, 12, 3288.

[5]

Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Adv. Energy Mater. 2021, 11, 2003065.

[6]

B. Li, X. Zhang, T. Wang, Z. He, B. Lu, S. Liang, J. Zhou, Nanomicro Lett. 2022, 14(6), 1.

[7]

Q. Zhang, J. Luan, X. Huang, L. Zhu, Y. Tang, X. Ji, H. Wang, Small 2020, 16, 2000929.

[8]

J. Ballesteros, P. Díaz-Arista, Y. Meas, R. Ortega, G. Trejo, Electrochim. Acta 2007, 52, 3686.

[9]

G. Cassabois, P. Valvin, B. Gil, Nat. Photonics 2016, 10, 262.

[10]

H. Jia, M. Qiu, C. Tang, H. Liu, S. Fu, X. Zhang, EcoMat 2022, 4, e12190.

[11]

M. Qiu, H. Jia, C. Lan, H. Liu, S. Fu, Energy Storage Mater. 2022, 45, 1175.

[12]

Q. Song, J. Liang, S. Liu, Y. Zhang, J. Zhu, C. Zhu, Nano Res. 2023, 16, 403.

[13]

H. Wong, T. W. Tang, H. Chen, M. Xu, J. Wang, Y. Cai, W. A. Goddard, Z. Luo, J. Mater. Chem. A 2024, 12, 4195.

[14]

Y. Shi, S. Yuan, B. Ter-Ovanessian, K. Hermange, Y. Huo, B. Normand, Appl. Surf. Sci. 2021, 544, 148849.

[15]

Z. Yang, C. Lv, W. Li, T. Wu, Q. Zhang, Y. Tang, M. Shao, H. Wang, Small 2022, 18, 2104148.

[16]

X. Gao, H. Wu, W. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G. Zou, H. Hou, X. Ji, Small 2020, 16, 1905842.

[17]

W. G. Lim, X. Li, D. Reed, Small Methods 2023, 8, 2300965.

[18]

H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, Nat. Energy 2016, 1(5), 1.

[19]

S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao, L. Chen, D. G. Ivey, Y. Deng, W. Wei, J. Mater. Chem. A 2018, 6, 5733.

[20]

S. D. Pu, C. Gong, Y. T. Tang, Z. Ning, J. Liu, S. Zhang, Y. Yuan, D. Melvin, S. Yang, L. Pi, Adv. Mater. 2022, 34, 2202552.

[21]

A. Bayaguud, X. Luo, Y. Fu, C. Zhu, ACS Energy Lett. 2020, 5, 3012.

[22]

Y. Zhang, X. Han, R. Liu, Z. Yang, S. Zhang, Y. Zhang, H. Wang, Y. Cao, A. Chen, J. Sun, Small 2022, 18, 2105978.

[23]

M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, Adv. Mater. 2021, 33, 2100187.

[24]

Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, J. Luo, Energ. Environ. Sci. 2021, 14, 3609.

[25]

Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energ. Environ. Sci. 2019, 12, 1938.

[26]

P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Adv. Funct. Mater. 2020, 30, 1908528.

[27]

Q. Li, A. Chen, D. H. Wang, Z. X. Pei, C. Zhi, Joule 2022, 6, 273.

[28]

Y. Cheng, Y. Jiao, P. Wu, Energ. Environ. Sci. 2023, 16, 4561.

[29]

Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao, P. Wu, Adv. Sci. 2022, 9, 2104832.

[30]

Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu, X. Song, Y. Ma, H. Xiang, Y. Huang, ACS Energy Lett. 2022, 8, 372.

[31]

L. Wang, W. Huang, W. Guo, Z. H. Guo, C. Chang, L. Gao, X. Pu, Adv. Funct. Mater. 2022, 32, 2108533.

[32]

W. Liu, X. Li, Y. Wang, D. Yang, Z. Guo, M. Liu, J. Wang, J. Energy Chem. 2023, 81, 339.

[33]

X. Yang, J. Cheng, H. Li, Y. Xu, W. Sun, W. Tu, J. Zhou, Appl. Surf. Sci. 2023, 627, 157284.

[34]

D. Zhao, S. Xu, T. Kong, Z. Li, M. Zhang, Y. Miao, Z. Feng, J. Qi, F. Wei, Q. Meng, J. Alloys Compd. 2023, 968, 172200.

[35]

N. K. Onkarappa, J. C. A. Satyanarayana, H. Suresh, P. Malingappa, Surf. Coat Tech. 2020, 397, 126062.

[36]

Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2020, 59, 13180.

[37]

M. Wang, C. Cao, F. Su, Y. Wang, L. Liu, W. Wang, W. Zhang, H. Shen, J. Zhang, Electrochim. Acta 2022, 403, 139699.

[38]

H. Liu, C. Li, H. Zhang, L. Fu, Y. Wu, H. Wu, J. Power Sources 2006, 159, 717.

[39]

J. Chen, J. Xiong, M. Ye, Z. Wen, Y. Zhang, Y. Tang, X. Liu, C. C. Li, Adv. Funct. Mater. 2023, 34, 2312564.

[40]

T. Wu, W. Lin, Electrochim. Acta 2021, 394, 139134.

[41]

M. Zhang, H. Hua, P. Dai, Z. He, L. Han, P. Tang, J. Yang, P. Lin, Y. Zhang, D. Zhan, Adv. Mater. 2023, 35, 2208630.

[42]

X. Guo, J. Zhou, C. Bai, X. Li, G. Fang, S. Liang, Mater. Today Energy 2020, 16, 100396.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/