Nanoscale Electron Beam Patterning of PEDOT:PSS Free-Standing Films for Enhanced Thermoelectric Performance

Hyejeong Lee , Sunho Lee , Sohyang Cha , Gopinathan Anoop , Hosun Shin

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12824

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12824 DOI: 10.1002/eem2.12824
RESEARCH ARTICLE

Nanoscale Electron Beam Patterning of PEDOT:PSS Free-Standing Films for Enhanced Thermoelectric Performance

Author information +
History +
PDF

Abstract

The growing demand for flexible, lightweight, and highly processable electronic devices makes high-functionality conducting polymers such as poly (3,4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT:PSS) an attractive alternative to conventional inorganic materials for various applications including thermoelectrics. However, considerable improvements are necessary to make conducting polymers a commercially viable choice for thermoelectric applications. This study explores nanopatterning as an effective and unique strategy for enhancing polymer functionality to optimize thermoelectric parameters, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. Introducing nanopatterning into thermoelectric polymers is challenging due to intricate technical hurdles and the necessity for individually manipulating the interdependent thermoelectric parameters. Here, array nanopatterns with different pattern spacings are imposed on free-standing PEDOT:PSS films using direct electron beam irradiation, thereby achieving selective control of electrical and thermal transport in PEDOT:PSS. Electron beam irradiation transformed PEDOT:PSS from a highly ordered quinoid to an amorphous benzoid structure. Optimized pattern spacing resulted in a remarkable 70% reduction in thermal conductivity and a 60% increase in thermoelectric figure of merit compared to non-patterned PEDOT:PSS. The proposed nanopatterning methodology demonstrates a skillful approach to precisely manipulate the thermoelectric parameters, thereby improving the thermoelectric performance of conducting polymers, and promising utilization in cutting-edge electronic applications.

Keywords

nanotechnology / polymers / semiconductors / thermoelectrics

Cite this article

Download citation ▾
Hyejeong Lee, Sunho Lee, Sohyang Cha, Gopinathan Anoop, Hosun Shin. Nanoscale Electron Beam Patterning of PEDOT:PSS Free-Standing Films for Enhanced Thermoelectric Performance. Energy & Environmental Materials, 2025, 8(2): e12824 DOI:10.1002/eem2.12824

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Urwyler, H. Schift, J. Gobrecht, O. Häfeli, M. Altana, F. Battiston, B. Müller, Sens. Actuators A Phys. 2011, 172, 2.

[2]

G.-F. Yu, X. Yan, M. Yu, M.-Y. Jia, W. Pan, X.-X. He, W.-P. Han, Z.-M. Zhang, L.-M. Yu, Y.-Z. Long, Nanoscale 2016, 8, 2944.

[3]

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, L. J. Guo, J. Mater. Chem. C 2016, 4, 5133.

[4]

Y. Wang, Y. Yu, J. Guo, Z. Zhang, X. Zhang, Y. Zhao, Adv. Funct. Mater. 2020, 30, 2000151.

[5]

J. Ju, N. Hu, D. M. Cairns, H. Liu, B. P. Timko, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 15482.

[6]

S. Zhu, Y. Tang, C. Lin, X. Y. Liu, Y. Lin, Small Methods 2021, 5, 2001060.

[7]

D. Gheysari, A. Behjat, M. Haji-Saeid, Eur. Polym. J. 2001, 37, 295.

[8]

Y. Laxmayyaguddi, N. Mydur, A. Shankar Pawar, V. Hebri, M. Vandana, G. Sanjeev, D. Hundekal, ACS Omega 2018, 3, 14188.

[9]

Y. Chen, J. Meng, Z. Gu, X. Wan, L. Jiang, S. Wang, Adv. Funct. Mater. 2020, 30, 1905287.

[10]

S. Park, S. W. Heo, W. Lee, D. Inoue, Z. Jiang, K. Yu, H. Jinno, D. Hashizume, M. Sekino, T. Yokota, K. Fukuda, K. Tajima, T. Someya, Nature 2018, 561, 516.

[11]

Q. Zhang, X. Yang, P. Li, G. Huang, S. Feng, C. Shen, B. Han, X. Zhang, F. Jin, F. Xu, T. J. Lu, Prog. Mater. Sci. 2015, 74, 332.

[12]

Y. Gu, W. Zhang, H. Wang, W. Y. Lee, Colloids Surf. B Biointerfaces 2014, 117, 42.

[13]

K. Scholten, E. Meng, Microsystems Nanoeng. 2016, 2(1), 1.

[14]

D. Qin, Y. Xia, G. M. Whitesides, Nat. Protoc. 2010, 5, 491.

[15]

M. Luo, T. H. I. I. I. Epps, Macromolecules 2013, 46, 7567.

[16]

Y. S. Jung, W. Jung, H. L. Tuller, C. A. Ross, Nano Lett. 2008, 8, 3776.

[17]

C.-C. Yu, H.-L. Chen, Microelectron. Eng. 2015, 132, 98.

[18]

N. Wen, Z. Fan, S. Yang, Y. Zhao, T. Cong, S. Xu, H. Zhang, J. Wang, H. Huang, C. Li, L. Pan, Nano Energy 2020, 78, 105361.

[19]

Z. Fan, J. Ouyang, Adv. Electron. Mater. 2019, 5(11), 1.

[20]

B. Xia, X.-L. Shi, L. Zhang, J. Luo, W.-Y. Chen, B. Hu, T. Cao, T. Wu, W.-D. Liu, Y. Yang, Q. Liu, Z.-G. Chen, Chem. Eng. J. 2024, 486, 150305.

[21]

X. Liu, X.-L. Shi, L. Zhang, W.-D. Liu, Y. Yang, Z.-G. Chen, J. Mater. Sci. Technol. 2023, 132, 81.

[22]

R. Zhang, S. Zhang, Q. Yin, B. Jiang, Y. Wang, K. Du, Q. Yin, Polymer (Guildf) 2022, 261, 125337.

[23]

H. Li, Y. Liang, S. Liu, F. Qiao, P. Li, C. He, Org. Electron. 2019, 69, 62.

[24]

M. Almasoudi, M. S. Zoromba, M. H Abdel-Aziz, M. Bassyouni, A. Alshahrie, A. M. Abusorrah, N. Salah, Polymer (Guildf) 2021, 228, 123950.

[25]

M. Bharti, P. Jha, A. Singh, A. K. Chauhan, S. Misra, M. Yamazoe, A. K. Debnath, K. Marumoto, K. P. Muthe, D. K. Aswal, Energy 2019, 176, 853.

[26]

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, L. Shi, Adv. Mater. 2015, 27, 2101.

[27]

L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B 1993, 47, 12727.

[28]

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373.

[29]

C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Adv. Mater. 2010, 22, 3970.

[30]

K. A. Murray, J. E. Kennedy, B. McEvoy, O. Vrain, D. Ryan, R. Cowman, C. L. Higginbotham, J. Mech. Behav. Biomed. Mater. 2013, 17, 252.

[31]

F. Dong, S. Maganty, S. J. Meschter, S. Nozaki, T. Ohshima, T. Makino, J. Cho, Polym. Degrad. Stab. 2017, 141, 45.

[32]

S. Park, S. H. Yoo, H. R. Kang, S. M. Jo, H. I. Joh, S. Lee, Sci. Rep. 2016, 6(1), 1.

[33]

R. García, Amplitude Modulation Atomic Force Microscopy, John Wiley &Sons, Hoboken, NJ 2011.

[34]

J. Stawikowska, A. G. Livingston, J. Membr. Sci. 2013, 425–426, 58.

[35]

W. Xu, P. M Wood-Adams, C. G. Robertson, Polymer (Guildf) 2006, 47, 4798.

[36]

J. E. McCarthy, C. A. Hanley, L. J. Brennan, V. G. Lambertini, Y. K. Gun’Ko, J. Mater. Chem. C 2014, 2, 764.

[37]

J. P. Thomas, L. Zhao, D. McGillivray, K. T. Leung, J. Mater. Chem. A 2014, 2, 2383.

[38]

J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li, J. Shinar, Polymer (Guildf) 2004, 45, 8443.

[39]

J. Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu, Y. Yang, Adv. Funct. Mater. 2005, 15, 203.

[40]

N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. R. Jo, B. J. Kim, K. Lee, Adv. Mater. 2014, 26, 2268.

[41]

E. Toto, S. Botti, S. Laurenzi, M. G. Santonicola, Appl. Surf. Sci. 2020, 513, 145839.

[42]

K. Schrote, M. W. Frey, Polymer (Guildf) 2013, 54, 737.

[43]

X. Wang, Y. Feng, K. Sun, N. Chai, B. Mai, S. Li, X. Chen, W. Zhao, Q. Zhang, Energy Environ. Mater. 2024, 7, e12650.

[44]

R. F. Egerton, P. Li, M. Malac, Micron 2004, 35, 399.

[45]

P. M. Smith, L. Su, W. Gong, N. Nakamura, B. Reeja-Jayan, S. Shen, RSC Adv. 2018, 8, 19348.

[46]

J. Liu, X. Wang, D. Li, N. E. Coates, R. A. Segalman, D. G. Cahill, Macromolecules 2015, 48, 585.

[47]

W. Shi, Z. Shuai, D. Wang, Adv. Funct. Mater. 2017, 27, 1702847.

[48]

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, X. Crispin, Nat. Mater. 2014, 13, 190.

[49]

Z. Fan, D. Du, X. Guan, J. Ouyang, Nano Energy 2018, 51, 481.

[50]

A. Kashyap, D. Rawat, D. Sarkar, N. K. Singh, K. Biswas, A. Soni, Angew. Chem. Int. Ed. 2024, 63, e202401234.

[51]

H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, APL Mater. 2015, 3, 41506.

[52]

Q. Wei, C. Uehara, M. Mukaida, K. Kirihara, T. Ishida, AIP Adv. 2016, 6, 45315.

[53]

W. Liu, Z. Lei, R. Yang, W. Xing, P. Tao, W. Shang, B. Fu, C. Song, T. Deng, ACS Appl. Mater. Interfaces 2022, 14, 10605.

[54]

Y. Xu, Z. Liu, X. Wei, J. Wu, J. Guo, B. Zhao, H. Wang, S. Chen, Y. Dou, Synth. Met. 2021, 271, 116628.

[55]

X. Wang, A. K. K. Kyaw, C. Yin, F. Wang, Q. Zhu, T. Tang, P. I. Yee, J. Xu, RSC Adv. 2018, 8, 18334.

[56]

N. Yanagishima, S. Kanehashi, H. Saito, K. Ogino, T. Shimomura, Polymer (Guildf) 2020, 206, 122912.

[57]

H. J. Lee, H. Shin, G. Anoop, T. J. Yoo, S. So, J. Ryu, B. H. Lee, J. Y. Song, E. Lee, S. Hong, J. H. Lee, J. Y. Jo, Nanoscale 2020, 12, 8701.

[58]

H. S. Shin, S. G. Jeon, J. Yu, Y. S. Kim, H. M. Park, J. Y. Song, Nanoscale 2014, 6, 6158.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/