PDF
Abstract
Thermoelectric materials, capable of converting temperature gradients into electrical power, have been traditionally limited by a trade-off between thermopower and electrical conductivity. This study introduces a novel, broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit (zT) without compromising electrical conductivity, using temperature-driven spin crossover. Our approach, supported by both theoretical and experimental evidence, is demonstrated through a case study of chromium doped-manganese telluride, but is not confined to this material and can be extended to other magnetic materials. By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover, we achieved a significant increase in thermopower, by approximately 136 µV K-1, representing more than a 200% enhancement at elevated temperatures within the paramagnetic domain. Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower. These findings, validated by inelastic neutron scattering, X-ray photoemission spectroscopy, thermal transport, and energy conversion measurements, shed light on crucial material design parameters. We provide a comprehensive framework that analyzes the interplay between spin entropy, hopping transport, and magnon/paramagnon lifetimes, paving the way for the development of high-performance spin-driven thermoelectric materials.
Keywords
spin crossover
/
thermoelectric materials
/
thermopower enhancement
/
paramagnons
/
magnons
Cite this article
Download citation ▾
Md Mobarak Hossain Polash, Matthew Stone, Songxue Chi, Daryoosh Vashaee.
Designing Spin-Crossover Systems to Enhance Thermopower and Thermoelectric Figure-of-Merit in Paramagnetic Materials.
Energy & Environmental Materials, 2025, 8(1): e12822 DOI:10.1002/eem2.12822
| [1] |
Y. Wang, N. S. Rogado, R. J. Cava, N. P. Ong, Nature 2003, 423, 425.
|
| [2] |
P. M. Chaikin, G. Beni, Phys. Rev. B 1976, 13, 647.
|
| [3] |
W. Koshibae, S. Maekawa, Phys. Rev. Lett. 2001, 87, 236603.
|
| [4] |
W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, J. Shi, Nature 2017, 549, 247.
|
| [5] |
C. Li, S. Ma, P. Wei, W. Zhu, X. Nie, X. Sang, Z. Sun, Q. Zhang, W. Zhao, Energ. Environ. Sci. 2020, 13, 535.
|
| [6] |
N. Tsujii, A. Nishide, J. Hayakawa, T. Mori, Sci. Adv. 2019, 5, eaat5935.
|
| [7] |
T. Okabe, J. Phys. Condens. Matter 2010, 22, 115604.
|
| [8] |
Y. Zheng, T. Lu, M. M. H. Polash, M. Rasoulianboroujeni, N. Liu, M. E. Manley, Y. Deng, P. J. Sun, X. L. Chen, R. P. Hermann, D. Vashaee, J. P. Heremans, H. Zhao, Sci. Adv. 2019, 5, eaat9461.
|
| [9] |
M. M. H Polash, F. Mohaddes, M. Rasoulianboroujeni, D. Vashaee, J. Mater. Chem. C 2020, 8, 4049.
|
| [10] |
D.-J. Kim, K.-D. Lee, S. Surabhi, S.-G. Yoon, J.-R. Jeong, B.-G. Park, Adv. Funct. Mater. 2016, 26, 5507.
|
| [11] |
H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, T. Mori, Materials Today Phys. 2017, 3, 85.
|
| [12] |
M. Ikhlas, T. Tomita, T. Koretsune, M.-T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, S. Nakatsuji, Nat. Phys. 2017, 13, 1085.
|
| [13] |
Z. Zamanipour, X. Shi, M. Mozafari, J. S. Krasinski, L. Tayebi, D. Vashaee, Ceram. Int., 2013, 39, 2353.
|
| [14] |
D. Vashaee, Y. Zhang, A. Shakouri, G. Zeng, Y. J. Chiu, Phys. Rev. B, 2006, 74, 195315.
|
| [15] |
A. Gharleghi, M. M. H. Polash, R. Malekfar, S. A. Yamini, D. Vashaee, J. Alloys Compd. 2020, 845, 156188.
|
| [16] |
A. Nikolaenko, J. von Milczewski, D. G. Joshi, S. Sachdev, Phys. Rev. B 2023, 108, 45123.
|
| [17] |
M. M. H Polash, D. Vashaee, Phys. Rev. B 2020, 102, 45202.
|
| [18] |
A. Maignan, V. Caignaert, B. Raveau, D. Khomskii, G. Sawatzky, Phys. Rev. Lett. 2004, 93, 26401.
|
| [19] |
D. P. Karim, A. T. Aldred, Phys. Rev. B 1979, 20, 2255.
|
| [20] |
V. Vennelakanti, I. B. Kilic, G. G. Terrones, C. Duan, H. J. Kulik, J. Phys. Chem. 2024, 128, 204.
|
| [21] |
J. D. Wasscher, C. Haas, Phys. Lett. 1964, 8, 302.
|
| [22] |
P. Sun, K. R. Kumar, M. Lyu, Z. Wang, J. Xiang, W. Zhang, Innovations 2021, 2, 100101.
|
| [23] |
S. Duan, Y. Yin, G.-Q. Liu, N. Man, J. Cai, X. Tan, K. Guo, X. Yang, J. Jiang, Research (Wash DC) 2021, 2021, 1949070.
|
| [24] |
Y. Wang, Y. Sui, X. Wang, W. Su, W. Cao, X. Liu, ACS Appl. Mater. Interfaces 2010, 28, 2213.
|
| [25] |
I. Terasaki, M. Iwakawa, T. Nakano, A. Tsukuda, W. Kobayashi, Dalton Trans. 2010, 39, 1005.
|
| [26] |
S. Butt, W. Xu, W. Q. He, Q. Tan, G. K. Ren, Y. Lin, C. W. Nan, J. Mater. Chem. A 2014, 2, 19479.
|
| [27] |
M. M. H Polash, M. Rasoulianboroujeni, D. Vashaee, Appl. Phys. Lett. 2020, 117, 43903.
|
| [28] |
M. M. H Polash, D. Moseley, J. Zhang, R. P. Hermann, D. Vashaee, Cell Rep. Phys. Sci. 2021, 2, 100614.
|
| [29] |
K. Shimada, T. Saitoh, H. Namatame, A. Fujimori, S. Ishida, S. Asano, M. Matoba, S. Anzai, Phys. Rev. B 1996, 53, 7673.
|
| [30] |
R. J. Iwanowski, M. H. Heinonen, E. Janik, Appl. Surf. Sci. 2005, 249, 222.
|
| [31] |
R. J. Iwanowski, M. H. Heinonen, B. Witkowska, J. Alloys Compd. 2010, 491, 13.
|
| [32] |
R. A. Bari, J. Sivardidre, Phys. Rev. B 1972, 5, 4466.
|
| [33] |
D. S. Negi, D. Singh, P. A. van Aken, R. Ahuja, Phys. Rev. B 2019, 100, 144108.
|
| [34] |
W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 2000, 62, 6869.
|
RIGHTS & PERMISSIONS
2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.