Multi-Scale Analysis Combined Operando Elemental/Spectroscopic Measurement Techniques in Oxide-Type All-Solid-State Na Batteries

Koji Hiraoka , Kazuo Yamamoto , Takeshi Kobayashi , Tetsuo Sakamoto , Shiro Seki

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12821

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12821 DOI: 10.1002/eem2.12821
RESEARCH ARTICLE

Multi-Scale Analysis Combined Operando Elemental/Spectroscopic Measurement Techniques in Oxide-Type All-Solid-State Na Batteries

Author information +
History +
PDF

Abstract

Understanding the charge/discharge mechanism of batteries plays an important role in the development of high-performance systems, but extremely complicated reactions are involved. Because these complex phenomena are also bottlenecks for the establishment of all-solid-state batteries (ASSB), we conducted multi-scale analysis using combined multi-measurement techniques, to directly observe charge/discharge reactions at hierarchical scales for the oxide-type ASSB using Na as the carrier cation. In particular, all of measurement techniques are applied to cross-section ASSB in the same cell, to complementarily evaluate the elemental distributions and structural changes. From Operando scanning electron microscopy–energy-dispersive X-ray spectroscopy, the Na concentration in the electrode layers changes on the micrometer scale under charge/discharge reactions in the first cycle. Furthermore, Operando Raman spectroscopy reveal changes in the bonding states at the atomic scale in the active material, including changes in reversible structural changes. After cycling the ASSB, the elemental distributions are clearly observed along with the particle shapes and can reveal the Na migration mechanism at the nanometer scale, by time-of-flight secondary ion mass spectrometry. Therefore, this study can provide a fundamental and comprehensive understanding of the charge/discharge mechanism by observing reaction processes at multiple scales.

Keywords

Operando / oxide-type all-solid-state battery / Raman / SEM-EDS / sodium battery / TOF-SIMS

Cite this article

Download citation ▾
Koji Hiraoka, Kazuo Yamamoto, Takeshi Kobayashi, Tetsuo Sakamoto, Shiro Seki. Multi-Scale Analysis Combined Operando Elemental/Spectroscopic Measurement Techniques in Oxide-Type All-Solid-State Na Batteries. Energy & Environmental Materials, 2025, 8(2): e12821 DOI:10.1002/eem2.12821

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Obama, Science 2017, 355, 126.

[2]

K. Peng, K. Feng, B. Chen, Y. Shan, N. Zhang, P. Wang, K. Fang, Y. Bai, X. Zou, W. Wei, X. Geng, Y. Zhang, J. Li, Nat. Commun. 2023, 14, 3144.

[3]

B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.

[4]

N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 2012, 11, 512.

[5]

C. Xu, P. Behrens, P. Gasper, K. Smith, M. Hu, A. Tukker, B. Steubing, Nat. Commun. 2023, 14, 119.

[6]

J. M. Tarascon, Nat. Chem. 2010, 2, 510.

[7]

J. T. Frith, M. J. Lacey, U. Ulissi, Nat. Commun. 2023, 14, 420.

[8]

V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energ. Environ. Sci. 2011, 4, 3243.

[9]

W. Cao, J. Zhang, H. Li, Energy Storage Mater. 2020, 26, 46.

[10]

H. Li, Joule 2019, 3, 911.

[11]

P. Minnmann, F. Strauss, A. Bielefeld, R. Ruess, P. Adelhelm, S. Burkhardt, S. L. Dreyer, E. Trevisanello, H. Ehrenberg, T. Brezesinski, F. H. Richter, J. Janek, Adv. Energy Mater. 2022, 12, 2201425.

[12]

C. Wang, J. Liang, J. T. Kim, X. Sun, Sci. Adv. 2022, 8, eadc9516.

[13]

Y. Gambe, Y. Sun, I. Honma, Sci. Rep. 2015, 5, 8869.

[14]

D. Cao, X. Sun, Y. Wang, H. Zhu, Energy Storage Mater. 2022, 48, 458.

[15]

V. Livshits, A. Blum, E. Strauss, G. Ardel, D. Golodnitsky, E. Peled, J. Power Sources 2001, 97, 782.

[16]

A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.

[17]

N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682.

[18]

A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Nat. Commun. 2012, 3, 856.

[19]

R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. 2007, 46, 7778.

[20]

Z. Jiang, S. Wang, X. Chen, W. Yang, X. Yao, X. Hu, Q. Han, H. Wang, Adv. Mater. 2020, 32, 1906221.

[21]

H. Y. P Hong, Mater. Res. Bull. 1976, 11, 173.

[22]

A. Hooper, J. Phys. D Appl. Phys. 1977, 10, 1487.

[23]

T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 2018, 30, 1803075.

[24]

H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, S. Orimo, J. Am. Chem. Soc. 2009, 131, 894.

[25]

G. C. Farrington, J. L. Briant, Science 1979, 204, 1371.

[26]

F. Gebert, J. Knott, R. Gorkin, S. L. Chou, S. X. Dou, Energy Storage Mater. 2021, 36, 10.

[27]

J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.

[28]

T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278.

[29]

Nat. Commun. 2022, 13, 4723.

[30]

I. López, J. Morey, J. B. Ledeuil, L. Madec, H. Martinez, J. Mater. Chem. A 2021, 9, 25341.

[31]

F. Strauss, D. Kitsche, Y. Ma, J. H. Teo, D. Goonetilleke, J. Janek, M. Bianchini, T. Brezesinski, Adv. Energy Sustain. Res. 2021, 2, 2100004.

[32]

Y. Shen, S. Wang, H. Li, K. Wang, K. Jiang, J. Energy Storage 2023, 64, 107164.

[33]

R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Chem. Rev. 2020, 120, 6820.

[34]

C. P. Grey, J. M. Tarascon, Nat. Mater. 2016, 16, 45.

[35]

D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li, K. Li, S. Wang, Q. Yu, M. Liu, S. Ganapathy, X. Qin, Q. Yang, M. Wagemaker, F. Kang, X. Yang, B. Li, Adv. Mater. 2019, 31, 1806620.

[36]

Y. Nomura, K. Yamamoto, M. Fujii, T. Hirayama, E. Igaki, K. Saitoh, Nat. Commun. 2020, 11, 2824.

[37]

E. Flores, P. Novák, E. J. Berg, Front. Energy Res. 2018, 6, 82.

[38]

T. Ono, K. Hiraoka, T. Kobayashi, K. Yamamoto, S. Seki, ACS Appl. Energy Mater. 2023, 6, 6194.

[39]

S. R. Taylor, Geochim. Cosmochim. Acta 1964, 28, 1273.

[40]

C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 2018, 3, 18013.

[41]

N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.

[42]

K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 2018, 18, 459.

[43]

X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, Adv. Mater. 2015, 27, 6670.

[44]

Y. Noguchi, E. Kobayashi, L. S. Plashnitsa, S. Okada, J. I. Yamaki, Electrochim. Acta 2013, 101, 59.

[45]

S. Bag, C. Zhou, S. Reid, S. Butler, V. Thangadurai, J. Power Sources 2020, 454, 227954.

[46]

J. B. Goodenough, H. Y. Hong, J. A. Kafalas, Mater. Res. Bull. 1976, 5, 77843.

[47]

Y. B. Rao, L. N. Patro, Mater. Lett. 2021, 301, 130267.

[48]

H. Park, K. Jung, M. Nezafati, C. S. Kim, B. Kang, ACS Appl. Mater. Interfaces 2016, 8, 27814.

[49]

B. Ouyang, J. Wang, T. He, C. J. Bartel, H. Huo, Y. Wang, V. Lacivita, H. Kim, G. Ceder, Nat. Commun. 2021, 12, 5752.

[50]

S. Y. Lim, H. Kim, R. A. Shakoor, Y. Jung, J. W. Choi, J. Electrochem. Soc. 2012, 159, A1393.

[51]

F. Tuinstra, J. L. Koenig, J. Chem. Phys. 1970, 53, 1126.

[52]

M. Osada, M. Kakihana, Carbon N. Y. 2007, 45, 2460.

[53]

A. C. Ferrari, Solid State Commun. 2007, 143, 47.

[54]

P. K. Jha, O. P. Pandey, K. Singh, SILICON 2017, 9, 411.

[55]

Y. Wang, Z. Wang, F. Zheng, J. Sun, J. A. S. Oh, T. Wu, G. Chen, Q. Huang, M. Kotobuki, K. Zeng, L. Lu, Adv. Sci. 2022, 9, 2105849.

[56]

J. S. de Andrade, A. G. Pinheiro, I. F. Vasconcelos, J. M. Sasaki, J. A. C. de Paiva, M. A. Valente, A. S. B. Sombra, J. Phys. Condens. Matter 1999, 11, 4451.

[57]

F. H El-Batal, E. M. Khalil, Y. M. Hamdy, H. M. Zidan, M. S. Aziz, A. M. Abdelghany, SILICON 2010, 2, 41.

[58]

V. Kravchenko, V. Michailov, S. Sigaryov, Solid State Ion. 1992, 50, 19.

[59]

N. Membreño, P. Xiao, K.-S. Park, J. B. Goodenough, G. Henkelman, K. J. Stevenson, J. Phys. Chem. C 2013, 117, 11994.

[60]

Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Adv. Energy Mater. 2013, 3, 156.

[61]

W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang, J. Chen, M. Jing, F. Li, C. E. Banks, J. Mater. Chem. A 2014, 2, 5358.

[62]

Y. Ni, R. Zheng, X. Tan, W. Yue, P. Lv, J. Yang, D. Song, K. Yu, W. Wei, J. Mater. Chem. A 2015, 3, 17558.

[63]

C. Kaps, F. Schirrmeister, P. Stefanski, J. Non Cryst. Solids 1986, 87, 159.

[64]

D. Kutsuzawa, T. Kobayashi, S. Komiya, ACS Appl. Energy Mater. 2022, 5, 4025.

[65]

T. Kobayashi, F. Chen, V. Seznec, C. Masquelier, J. Power Sources 2020, 450, 227597.

[66]

T. Sakamoto, M. Koizumi, J. Kawasaki, J. Yamaguchi, Appl. Surf. Sci. 2008, 255, 1617.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/