An Ultrastretchable and Highly Conductive Hydrogel Electrolyte for All-in-One Flexible Supercapacitor With Extreme Tensile Resistance

Yichen Li , Xuyan Wei , Fan Jiang , Yue Wang , Mingshu Xie , Jing Peng , Congwei Yi , Jiuqiang Li , Maolin Zhai

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12820

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12820 DOI: 10.1002/eem2.12820
RESEARCH ARTICLE

An Ultrastretchable and Highly Conductive Hydrogel Electrolyte for All-in-One Flexible Supercapacitor With Extreme Tensile Resistance

Author information +
History +
PDF

Abstract

Stretchability is a crucial property of flexible all-in-one supercapacitors. This work reports a novel hydrogel electrolyte, polyacrylamide-divinylbenzene-Li2SO4 (PAM-DVB-Li) synthesized by using a strategy of combining hydrophobic nodes and hydrophilic networks as well as a method of dispersing hydrophobic DVB crosslinker to acrylamide monomer/Li2SO4 aqueous solution by micelles and followed γ-radiation induced polymerization and crosslinking. The resultant PAM-DVB-Li hydrogel electrolyte possesses excellent mechanical properties with 5627 ± 241% stretchability and high ionic conductivity of 53 ± 3 mS cm-1. By in situ polymerization of conducting polyaniline (PANI) on the PAM-DVB-Li hydrogel electrolyte, a novel all-in-one supercapacitor, PAM-DVB-Li/PANI, with highly integrated structure is prepared further. Benefiting from the excellent properties of hydrogel electrolyte and the all-in-one structure, the device exhibits a high specific capacitance of 469 mF cm-2 at 0.5 mA cm-2, good cyclic stability, safety, and deformation damage resistance. More importantly, the device demonstrates a superior tensile resistance (working normally under no more than 300% strain, capacitance stability in 1000 cycles of 1000% stretching and 10 cycles of 3000% stretching) far beyond that of other all-in-one supercapacitors. This work proposes a novel strategy to construct tensile-resistant all-in-one flexible supercapacitors that can be used as an energy storage device for stretchable electronic devices.

Keywords

all-in-one supercapacitors / homogeneous hydrophobic crosslinking / hydrogels / radiation synthesis / tensile resistance

Cite this article

Download citation ▾
Yichen Li, Xuyan Wei, Fan Jiang, Yue Wang, Mingshu Xie, Jing Peng, Congwei Yi, Jiuqiang Li, Maolin Zhai. An Ultrastretchable and Highly Conductive Hydrogel Electrolyte for All-in-One Flexible Supercapacitor With Extreme Tensile Resistance. Energy & Environmental Materials, 2025, 8(2): e12820 DOI:10.1002/eem2.12820

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Cao, C. Jiang, N. Sun, D. Tan, Q. Li, S. Bi, J. Song, J. Sci. Adv. Mater. Devices 2021, 6, 338.

[2]

Y. Shi, G. Yu, Chem. Mater. 2016, 28, 2466.

[3]

Y. Gao, C. Xie, Z. Zheng, Adv. Energy Mater. 2020, 11, 2002838.

[4]

G. H. Lee, H. Moon, H. Kim, G. H. Lee, W. Kwon, S. Yoo, D. Myung, S. H. Yun, Z. Bao, S. K. Hahn, Nat. Rev. Mater. 2020, 5, 149.

[5]

C. Mu, Y. Song, W. Huang, A. Ran, R. Sun, W. Xie, H. Zhang, Adv. Funct. Mater. 2018, 28, 1707503.

[6]

M. Tebyetekerwa, I. Marriam, Z. Xu, S. Yang, H. Zhang, F. Zabihi, R. Jose, S. Peng, M. Zhu, S. Ramakrishna, Energ. Environ. Sci. 2019, 12, 2148.

[7]

L. Li, Z. Lou, D. Chen, K. Jiang, W. Han, G. Shen, Small 2018, 14, e1702829.

[8]

M. Zhu, Y. Huang, Y. Huang, H. Li, Z. Wang, Z. Pei, Q. Xue, H. Geng, C. Zhi, Adv. Mater. 2017, 29, 1605137.

[9]

T. Lv, Y. Yao, N. Li, T. Chen, Angew. Chem. Int. Ed. Engl. 2016, 55, 9191.

[10]

S. Wang, H. Song, X. Song, T. Zhu, Y. Ye, J. Chen, L. Yu, J. Xu, K. Chen, Energy Stor. Mater. 2021, 39, 139.

[11]

Z. Zhao, K. Xia, Y. Hou, Q. Zhang, Z. Ye, J. Lu, Chem. Soc. Rev. 2021, 50, 12702.

[12]

X. Zhang, L. Wang, J. Peng, P. Cao, X. Cai, J. Li, M. Zhai, Adv. Mater. Interfaces 2015, 2, 1500267.

[13]

B. Liu, Y. Ye, M. Yang, Y. Liu, H. Chen, H. Li, W. Fang, J. Qiu, Adv. Funct. Mater. 2023, 34, 2310534.

[14]

X. Wei, T. Lin, J. Gao, Y. Hu, Z. Zhang, J. Peng, J. Li, M. Zhai, ACS Appl. Mater. Interfaces 2024, 16, 12586.

[15]

Z. Wang, Q. Pan, Adv. Funct. Mater. 2017, 27, 1700690.

[16]

K. Liang, R. A. Matsumoto, W. Zhao, N. C. Osti, I. Popov, B. P. Thapaliya, S. Fleischmann, S. Misra, K. Prenger, M. Tyagi, E. Mamontov, V. Augustyn, R. R. Unocic, A. P. Sokolov, S. Dai, P. T. Cummings, M. Naguib, Adv. Funct. Mater. 2021, 31, 2104007.

[17]

K. Wang, X. Zhang, C. Li, X. Sun, Q. Meng, Y. Ma, Z. Wei, Adv. Mater. 2015, 27, 7451.

[18]

C. Yin, X. Liu, J. Wei, R. Tan, J. Zhou, M. Ouyang, H. Wang, S. J. Cooper, B. Wu, C. George, Q. Wang, J. Mater. Chem. A 2019, 7, 8826.

[19]

W. Kim, W. Kim, Nanotechnology 2016, 27, 225402.

[20]

Z. Liu, G. Liang, Y. Zhan, H. Li, Z. Wang, L. Ma, Y. Wang, X. Niu, C. Zhi, Nano Energy 2019, 58, 732.

[21]

J. Yang, X. Yu, X. Sun, Q. Kang, L. Zhu, G. Qin, A. Zhou, G. Sun, Q. Chen, ACS Appl. Mater. Interfaces 2020, 12, 9736.

[22]

Z. Qiao, J. Parks, P. Choi, H. F. Ji, Polymers 2019, 11, 1773.

[23]

C.-C. Kim, H.-H. Lee, K. H. Oh, J.-Y. Sun, Science 2016, 352, 682.

[24]

X. Guo, F. Yang, W. Liu, C. Han, Y. Bai, X. Sun, L. Hao, W. Jiao, R. Wang, J. Mater. Chem. A 2021, 9, 14806.

[25]

Z. Qiao, M. Cao, K. Michels, L. Hoffman, H.-F. Ji, Polym. Rev. 2019, 60, 420.

[26]

Q. Chen, L. Zhu, C. Zhao, Q. Wang, J. Zheng, Adv. Mater. 2013, 25, 4171.

[27]

S. Tan, C. Wang, B. Yang, J. Luo, Y. Wu, Adv. Mater. 2022, 34, 2206904.

[28]

S. Francis, D. Mitra, B. R. Dhanawade, L. Varshney, S. Sabharwal, Radiat. Phys. Chem. 2009, 78, 951.

[29]

T. Lin, M. Shi, F. Huang, J. Peng, Q. Bai, J. Li, M. Zhai, ACS Appl. Mater. Interfaces 2018, 10, 29684.

[30]

C. Wang, B. Yang, R. Xiang, J. Ji, Y. Wu, S. Tan, ACS Nano 2023, 17, 23194.

[31]

T. Cheng, L. Li, Y. L. Chen, S. Yang, X. L. Yang, Z. T. Liu, J. Qu, C. F. Meng, Y. Z. Zhang, W. Y. Lai, Adv. Mater. Interfaces 2022, 9, 2201137.

[32]

D. Wang, F. Yang, C. Wang, F. Chu, J. Nan, R. Chen, Chem. Eng. J. 2023, 455, 140949.

[33]

J. Yang, M. Guo, L. Feng, J. Hao, Y. Guo, Z. Li, S. Liu, G. Qin, G. Sun, Q. Chen, J. Mater. Chem. C 2023, 11, 7419.

[34]

X. Gao, Q. Hu, K. Sun, H. Peng, X. Xie, H. A. Hamouda, G. Ma, J. Alloys Compd. 2021, 888, 161554.

[35]

Y. Chen, H. Ren, D. Rong, Y. Huang, S. He, Q. Rong, Polymer 2023, 270, 125796.

[36]

H. Wan, C. Qin, A. Lu, J. Mater. Chem. A 2022, 10, 17279.

[37]

S. Cui, Y. Lv, W. Miao, W. Hou, X. Wang, Q. Hu, K. Sun, H. Peng, G. Ma, J. Energy Storage 2023, 73, 108843.

[38]

J. D. Van Dyke, K. L. Kasperski, J. Polym. Sci. A Polym. Chem. 2003, 31, 1807.

[39]

M. E. S. R. Silva, E. R. Dutra, V. Mano, J. C. Machado, Polym. Degrad. Stab. 2000, 67, 491.

[40]

J. Huang, S. Han, J. Zhu, Q. Wu, H. Chen, A. Chen, J. Zhang, B. Huang, X. Yang, L. Guan, Adv. Funct. Mater. 2022, 32, 2205708.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/