Tailoring the Periphery Aliphatic Group of Cathode Organosulfide for Rechargeable High-Performance All-Solid-State Lithium Battery

Yan Chen , Mingcong Yang , Wei Hu , Tao Chen , Jun Li , Shun Wang , Huile Jin , Jichang Wang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12819

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12819 DOI: 10.1002/eem2.12819
RESEARCH ARTICLE

Tailoring the Periphery Aliphatic Group of Cathode Organosulfide for Rechargeable High-Performance All-Solid-State Lithium Battery

Author information +
History +
PDF

Abstract

Organic cathode materials exhibit higher energy storage capacity, their poor cyclability due to dissolution in liquid organic electrolytes remains a challenge. However, recently, the electrochemical behavior of organopolysulfides incorporating N-heterocycles unveils promising cathode materials with stable cycling performance. Herein, the integration of organosulfides salt as cathodes with solid electrolytes, exemplified by sodium allyl(methyl)carbamodithioate and sodium diethylcarbamodithioate with a polymer solid electrolyte of polyethylene oxide and LiTFSI, addresses the poor electrochemical stability of organic electrodes. Comparative analysis highlights sodium allyl(methyl)carbamodithioate’s superior electrochemical performance and stability compared with sodium diethylcarbamodithioate, emphasizing the efficacy of periphery aliphatic modification in enhancing electrode capacity, rate performance, and electrochemical stability for organosulfide materials within all-solid-state lithium organic batteries. We also explore the origin of periphery aliphatic modification in these enhancing electrochemical performances by kinetic analysis and thermodynamic analysis. Furthermore, employing density functional theory calculations and ex situ FTIR experiments elucidates the critical role of the N–C=S structure in the energy storage mechanism. This research advances organic cathode design within organosulfide materials, unlocking the potential of all-solid-state lithium organic batteries with enhanced cyclability, propelling the development of next-generation energy storage systems.

Keywords

all-solid-state lithium organic batteries / organic cathode materials / organosulfide materials / periphery aliphatic design / polyethylene oxide

Cite this article

Download citation ▾
Yan Chen, Mingcong Yang, Wei Hu, Tao Chen, Jun Li, Shun Wang, Huile Jin, Jichang Wang. Tailoring the Periphery Aliphatic Group of Cathode Organosulfide for Rechargeable High-Performance All-Solid-State Lithium Battery. Energy & Environmental Materials, 2025, 8(2): e12819 DOI:10.1002/eem2.12819

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J. M. Tarascon, ChemSusChem 2008, 1, 348.

[2]

M. Armand, J. M. Tarascon, Nature 2008, 451, 652.

[3]

Y. Liang, P. Zhang, J. Chen, Chem. Sci. 2013, 4, 1330.

[4]

G. S. Vadehra, R. P. Maloney, M. A Garcia-Garibay, B. Dunn, Chem. Mater. 2014, 26, 7151.

[5]

Y. Hanyu, Y. Ganbe, I. Honma, J. Power Sources 2013, 221, 186.

[6]

L. Zhu, J. Liu, Z. Liu, L. Xie, X. Cao, ChemElectroChem 2019, 6, 787.

[7]

C. Peng, G. H. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C. Su, D. Yu, L. Zu, J. Yang, M. F. Ng, Y. S. Hu, Y. Yang, M. Armand, K. P. Loh, Nat. Energy 2017, 2, 17074.

[8]

K. Pirnat, R. Dominko, R. Cerc-Korosec, G. Mali, B. Genorio, M. Gaberscek, J. Power Sources 2012, 199, 308.

[9]

B. Genorio, K. Pirnat, R. Cerc-Korosec, R. Dominko, M. Gaberscek, Angew. Chem. Int. Ed. 2010, 122, 7380.

[10]

W. Wan, H. Lee, X. Yu, C. Wang, K. W. Nam, X. Q. Yang, H. Zhou, RSC Adv. 2014, 4, 19878.

[11]

Z. Ba, Z. Wang, M. Luo, H. B. Li, Y. Li, T. Huang, J. Dong, Q. Zhang, X. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 807.

[12]

Z. Luo, L. Liu, J. Ning, K. Lei, Y. Lu, F. Li, J. Chen, Angew. Chem. Int. Ed. 2018, 57, 9443.

[13]

Z. Song, Y. Qian, T. Zhang, M. Otani, H. Zhou, Z. Song, Y. Qian, T. Zhang, H. Zhou, M. Otani, Adv. Sci. 2015, 2, 1500124.

[14]

C. Guo, K. Zhang, Q. Zhao, L. Pei, J. Chen, Chem. Commun. 2015, 51, 10244.

[15]

Y. Hanyu, T. Sugimoto, Y. Ganbe, A. Masuda, I. Honma, J. Electrochem. Soc. 2014, 161, A6.

[16]

A. Unemoto, Y. Iwai, S. Mitani, S. W. Baek, S. Ito, T. Tomai, J. Kawamura, I. Honma, Solid State Ion. 2011, 201, 11.

[17]

M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 2010, 195, 7904.

[18]

W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513.

[19]

E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 2011, 40, 2525.

[20]

F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Adv. Energy Mater. 2016, 6, 1501590.

[21]

Z. Shadike, S. Tan, Q. C. Wang, R. Lin, E. Hu, D. Qu, X. Q. Yang, Mater. Horizons 2021, 8, 471.

[22]

X. Zhang, K. Chen, Z. Sun, G. Hu, R. Xiao, H. M. Cheng, F. Li, Energy Environ. Sci. 2020, 13, 1076.

[23]

S. J. Visco, L. C. DeJonghe, J. Electrochem. Soc. 1988, 135, 2905.

[24]

D. Y. Wang, W. Guo, Y. Fu, Acc. Chem. Res. 2019, 52, 2290.

[25]

A. Bhargav, Y. Ma, K. Shashikala, Y. Cui, Y. Losovyj, Y. Fu, J. Mater. Chem. A 2017, 5, 25005.

[26]

D. Y. Wang, Y. Si, J. Li, Y. Fu, J. Mater. Chem. A 2019, 7, 7423.

[27]

D.-Y. Wang, Y. Si, W. Guo, Y. Fu, D. Wang, Y. Si, W. Guo, Y. Fu, Adv. Sci. 2020, 7, 1902646.

[28]

S. Cesarec, F. Edgar, T. Lai, C. Plisson, Dalton Trans. 2022, 51, 5004.

[29]

P. W. Miller, D. Bender, Chemistry 2012, 18, 433.

[30]

J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.

[31]

Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J. Chen, J. Am. Chem. Soc. 2014, 136, 16461.

[32]

W. Wei, L. Li, L. Zhang, J. Hong, G. He, Electrochem. Commun. 2018, 90, 21.

[33]

J. Yu, L. Chen, Q. Wu, J. Wang, L. Cheng, H. G. Wang, J. Colloid Interface Sci. 2023, 649, 159.

[34]

W. Li, L. Chen, Y. Sun, C. Wang, Y. Wang, Y. Xia, Solid State Ion. 2017, 300, 114.

[35]

C. Luo, X. Ji, J. Chen, K. J. Gaskell, X. He, Y. Liang, J. Jiang, C. Wang, Angew. Chem. Int. Ed. 2018, 57, 8567.

[36]

W. Ji, X. Zhang, L. Xin, A. Luedtke, D. Zheng, H. Huang, T. Lambert, D. Qu, Energy Storage Mater. 2022, 45, 680.

[37]

Y. Zhang, Y. An, S. Dong, J. Jiang, H. Dou, X. Zhang, J. Phys. Chem. C 2018, 122, 22294.

[38]

H. Fei, Y. Liu, Y. An, X. Xu, G. Zeng, Y. Tian, L. Ci, B. Xi, S. Xiong, J. Feng, J. Power Sources 2018, 399, 294.

[39]

X. Chi, F. Hao, J. Zhang, X. Wu, Y. Zhang, S. Gheytani, Nano Energy 2019, 62, 718.

[40]

X. Chi, Y. Liang, F. Hao, Y. Zhang, J. Whiteley, H. Dong, P. Hu, S. Lee, Y. Yao, Angew. Chem. Int. Ed. 2018, 57, 2630.

[41]

F. Hao, Y. Liang, Y. Zhang, Z. Chen, J. Zhang, Q. Ai, H. Guo, Z. Fan, J. Lou, Y. Yao, ACS Energy Lett. 2021, 6, 201.

[42]

W. Hu, M. Yang, T. Fan, Z. Li, Y. Wang, H. Li, G. Zhu, J. Li, H. Jin, L. Yu, Battery Energy 2023, 2, 20230021.

[43]

J. Chen, Z. Lin, W. Xiang, B. Wu, G. Zhang, X. Wen, Y. Che, D. Ruan, W. Li, M. Chen, Electrochim. Acta 2022, 436, 141374.

[44]

J. Sicklinger, H. Beyer, S. Oswald, M. Bock, A. Hubert, F. Friedrich, S. Pieper, L. Lini, C. Mn, L. Zhu, T. Yan, D. Jia, Y. Wang, Q. Wu, H. Gu, J. Electrochem. Soc. 2019, 166, A5437.

[45]

W. Suetaka, Bull. Chem. Soc. Jpn. 1967, 40, 2077.

[46]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[47]

Y. Lu, X. Hou, L. Miao, L. Li, R. Shi, L. Liu, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 7020.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/