Ultrafast Laser Irradiation Induced Oxidation of Dopant-Free Spiro-OMeTAD for Improving the Perovskite Solar Cells Performance

Jiaqi Meng , Xiangyu Chen , Weihan Li , Nianyao Chai , Zhongle Zeng , Yunfan Yue , Fengyi Zhao , Xuewen Wang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12818

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12818 DOI: 10.1002/eem2.12818
RESEARCH ARTICLE

Ultrafast Laser Irradiation Induced Oxidation of Dopant-Free Spiro-OMeTAD for Improving the Perovskite Solar Cells Performance

Author information +
History +
PDF

Abstract

The exceptional photoelectric performance and high compatibility of perovskite materials render perovskite solar cells highly promising for extensive development, thus garnering significant attention. In perovskite solar cells, the hole transport layer plays a crucial role. For the commonly employed organic small molecule hole transport material Spiro-OMeTAD, a certain period of oxidation treatment is required to achieve complete transport performance. However, this posttreatment oxidation processes typically rely on ambient oxidation, which poses challenges in terms of precise control and leads to degradation of the perovskite light absorption layer. This approach fails to meet the demands for high efficiency and stability in practical application. Herein, the mechanism of ultrafast laser on Spiro-OMeTAD and the reaction process for laser-induced oxidation of it are investigated. PbI2 at Perovskite/Spiro-OMeTAD interface breaks down to produce I2 upon ultrafast laser irradiation and I2 promote the oxidation process. Through the laser irradiation oxidation processing, a higher stability of perovskite solar cells is achieved. This work establishes a new approach toward oxidation treatment of Spiro-OMeTAD.

Keywords

hole transport layer / perovskite solar cells / ultrafast laser irradiation / undoped Spiro-OMeTAD

Cite this article

Download citation ▾
Jiaqi Meng, Xiangyu Chen, Weihan Li, Nianyao Chai, Zhongle Zeng, Yunfan Yue, Fengyi Zhao, Xuewen Wang. Ultrafast Laser Irradiation Induced Oxidation of Dopant-Free Spiro-OMeTAD for Improving the Perovskite Solar Cells Performance. Energy & Environmental Materials, 2025, 8(2): e12818 DOI:10.1002/eem2.12818

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nerl, Best research-cell efficiency chart from the national renewable energy laboratory, https://www.nrel.gov/pv/cell-efficiency.html (accessed: February 2024).

[2]

G. Xie, H. Li, L. Qiu, Interdiscip. Mater. 2024, 3, e12142.

[3]

N. A. N Ouedraogo, G. O. Odunmbaku, B. Guo, S. Chen, X. Lin, T. Shumilova, K. Sun, ACS Appl. Mater. Interfaces 2022, 14, 34303.

[4]

K. Rakstys, C. Igci, M. K. Nazeeruddin, Chem. Sci. 2019, 10, 6748.

[5]

S. Wang, Z. Huang, X. Wang, Y. Li, M. Günther, S. Valenzuela, P. Parikh, A. Cabreros, W. Xiong, Y. S. Meng, J. Am. Chem. Soc. 2018, 140, 16720.

[6]

S. Wang, M. Sina, P. Parikh, T. Uekert, B. Shahbazian, A. Devaraj, Y. S. Meng, Nano Lett. 2016, 16, 5594.

[7]

H. J. Snaith, M. Grätzel, Appl. Phys. Lett. 2006, 89, 262114.

[8]

C. Ding, R. Huang, C. Ahläng, J. Lin, L. Zhang, D. Zhang, Q. Luo, F. Li, R. Österbacka, C.-Q. Ma, J. Mater. Chem. A 2021, 9, 7575.

[9]

G. Zhu, L. Yang, C. Zhang, G. Du, N. Fan, Z. Luo, X. Zhang, J. Zhang, ACS Appl. Energy Mater. 2022, 5, 3595.

[10]

Q. Fu, Z. Xu, X. Tang, T. Liu, X. Dong, X. Zhang, N. Zheng, Z. Xie, Y. Liu, ACS Energy Lett. 2021, 6, 1521.

[11]

S.-M. Bang, S. S. Shin, N. J. Jeon, Y. Y. Kim, G. Kim, T.-Y. Yang, J. Seo, ACS Energy Lett. 2020, 5, 1198.

[12]

J.-Y. Seo, H.-S. Kim, S. Akin, M. Stojanovic, E. Simon, M. Fleischer, A. Hagfeldt, S. M. Zakeeruddin, M. Grätzel, Energy Environ. Sci. 2018, 11, 2985.

[13]

X. Chen, B. Guo, Z. Zhang, B. Zhang, X. Zu, N. A. N. Ouedraogo, J. Oh, Y. Cho, G. O. Odunmbaku, K. Chen, Y. Zhou, S. Chen, C. Yang, J. Du, K. Sun, DeCarbon 2023, 1, 100004.

[14]

J. Zhou, H. Li, L. Tan, Y. Liu, J. Yang, R. Hua, C. Yi, Angew. Chem. 2023, 62, e202300314.

[15]

X. Liu, B. Zheng, L. Shi, S. Zhou, J. Xu, Z. Liu, J. S. Yun, E. Choi, M. Zhang, Y. Lv, W.-H. Zhang, J. Huang, C. Li, K. Sun, J. Seidel, M. He, J. Peng, X. Hao, M. Green, Nat. Photonics 2023, 17, 96.

[16]

S. Wang, W. Yuan, Y. S. Meng, ACS Appl. Mater. Interfaces 2015, 7, 24791.

[17]

S. N. Vijayaraghavan, K. Khawaja, J. Wall, W. Xiang, F. Yan, Energy Adv. 2024, 3, 1054.

[18]

W. Luo, C. Wu, D. Wang, Z. Zhang, X. Qi, X. Guo, B. Qu, L. Xiao, Z. Chen, Org. Electron. 2019, 74, 7.

[19]

M. Hu, X. Wu, W. L. Tan, B. Tan, A. D. Scully, L. Ding, C. Zhou, Y. Xiong, F. Huang, A. N. Simonov, U. Bach, Y. B. Cheng, S. Wang, J. Lu, ACS Appl. Mater. Interfaces 2020, 12, 8260.

[20]

B. Guo, X. Chen, H. Luo, G. O. Odunmbaku, T. Jiang, N. A. N. Ouedraogo, Z. Huang, Q. Gao, B. Zhang, Y. Ouyang, Y. Pan, T. Xia, C. Wang, K. Zahid, C. Li, S. Chen, Y. Zheng, Z. Ma, K. Sun, Sol. RRL 2024, 8, 2300934.

[21]

G. Du, L. Yang, C. Zhang, X. Zhang, N. Rolston, Z. Luo, J. Zhang, Adv. Energy Mater. 2022, 12, 2103966.

[22]

A. Barranco, M. C Lopez-Santos, J. Idigoras, F. J. Aparicio, J. Obrero-Perez, V. Lopez-Flores, L. Contreras-Bernal, V. Rico, J. Ferrer, J. P. Espinos, A. Borras, J. A. Anta, J. R Sanchez-Valencia, Adv. Energy Mater. 2020, 10, 1901524.

[23]

R. Hayashi, A. Murota, K. Oka, Y. Inada, K. Yamashita, RSC Adv. 2023, 13, 18561.

[24]

J. Kong, Y. Shin, J. A. Röhr, H. Wang, J. Meng, Y. Wu, A. Katzenberg, G. Kim, D. Y. Kim, T.-D. Li, E. Chau, F. Antonio, T. Siboonruang, S. Kwon, K. Lee, J. R. Kim, M. A. Modestino, H. Wang, A. D. Taylor, Nature 2021, 594, 51.

[25]

N. Chai, Y. Yue, X. Chen, Z. Zeng, S. Li, X. Wang, Int. J. Extreme Manuf. 2024, 6, 025003.

[26]

M. Kedia, M. Rai, H. Phirke, C. A. Aranda, C. Das, V. Chirvony, S. Boehringer, M. Kot, M. M. Byranvand, J. I. Flege, A. Redinger, M. Saliba, ACS Energy Lett. 2023, 8, 2603.

[27]

W. Pfleging, Int. J. Extreme Manuf. 2021, 3, 012002.

[28]

W. Mao, H. Li, B. Tang, C. Zhang, L. Liu, P. Wang, H. Dong, L. Zhang, Int. J. Extreme Manuf. 2023, 5, 045001.

[29]

J. Zhao, N. Chai, X. Chen, Y. Yue, Y.-B. Cheng, J. Qiu, X. Wang, Nanophotonics 2022, 11, 987.

[30]

N. Chai, X. Chen, Z. Zeng, R. Yu, Y. Yue, B. Mai, J. Wu, L. Mai, Y.-B. Cheng, X. Wang, Natl. Sci. Rev. 2023, 10, nwad245.

[31]

J. Wang, W. Tao, J. Sun, F. Wang, Y. Lian, K. Zhang, X. Wu, B. Guo, Opt. Laser Technol. 2022, 153, 108191.

[32]

X. Wang, Y. Feng, K. Sun, N. Chai, B. Mai, S. Li, X. Chen, W. Zhao, Q. Zhang, Energy Environ. Mater. 2024, 7, e12650.

[33]

Z. Li, M. Huang, B. Chang, J. Ge, D. Xin, D. Jiang, H. Liu, W. Zhou, Interdiscip. Mater. 2023, 2, 876.

[34]

P. Yuan, J. Wu, W. Sun, Q. Zhu, M. Zhang, J. Zou, X. Wang, X. Liu, Y. Yang, Z. Lan, Energy Technol. 2020, 8, 1901171.

[35]

Z. Guo, A. K. Jena, G. M. Kim, T. Miyasaka, Energy Environ. Sci. 2022, 15, 3171.

[36]

D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Nat. Rev. Mater. 2020, 5, 44.

[37]

R. S. Sanchez, E. Mas-Marza, Sol. Energy Mater. Sol. Cells 2016, 158, 189.

[38]

J. X Flores-Lasluisa, F. Huerta, D. Cazorla-Amorós, E. Morallón, Energy 2023, 273, 127256.

[39]

A. Achour, S. Vizireanu, G. Dinescu, L. Le Brizoual, M. A. Djouadi, M. Boujtita, Appl. Surf. Sci. 2013, 273, 49.

[40]

G. Levi, O. Senneca, M. Causà, P. Salatino, P. Lacovig, S. Lizzit, Carbon 2015, 90, 181.

[41]

H. Yang, C. Song, T. Xia, S. Li, D. Sun, F. Liu, G. J. Cheng, J. Mater. Chem. C 2021, 9, 12819.

[42]

N. Sultana, N. J. Demarais, D. Shevchenko, P. J. Derrick, Sol. RRL 2018, 2, 1800022.

[43]

A. F. Akbulatov, L. A. Frolova, N. N. Dremova, I. Zhidkov, V. M. Martynenko, S. A. Tsarev, S. Y. Luchkin, E. Z. Kurmaev, S. M. Aldoshin, K. J. Stevenson, P. A. Troshin, J. Phys. Chem. Lett. 2020, 11, 333.

[44]

D. V. Khudyakov, D. V. Ganin, A. D. Lyashedko, L. A. Frolova, P. A. Troshin, A. S. Lobach, Mendeleev Commun. 2021, 31, 456.

[45]

Y. Wang, M. Zhang, Y. Huang, X. Cao, Y. Dong, J. Zhao, Y. Li, Y. Wang, Opt. Commun. 2022, 523, 128608.

[46]

X. Zhang, J. Chen, L. Zheng, Y. Liu, X. Wang, Mater. Sci. Semicond. Process. 2023, 157, 107310.

[47]

W. H. Nguyen, C. D. Bailie, E. L. Unger, M. D. Mcgehee, J. Am. Chem. Soc. 2014, 136, 10996.

[48]

P. Ghosh, A. Ivaturi, D. Bhattacharya, J. Bowen, T. Nixon, J. Kowal, N. S. J. Braithwaite, S. Krishnamurthy, Mater. Today Chem. 2020, 17, 100321.

[49]

Z. Wei, Z. Li, P. Luo, J. Zhang, J. Luo, J. Alloys Compd. 2020, 830, 154625.

[50]

Ø. Nordseth, R. Kumar, K. Bergum, I. Chilibon, S. E. Foss, E. Monakhov, Materials 2019, 12, 3038.

[51]

F. Ma, Y. Zhao, Z. Qu, S. Yu, Z. Chu, Z. Xiong, J. Zhou, Z. Wei, X. Zhang, J. You, Sol. RRL 2023, 7, 2300042.

[52]

R. Zhao, T. Wu, R. Zhuang, Y. Hua, Y. Wang, Energy Environ. Mater. 2023, 6, e12417.

[53]

Z. Zeng, X. Chen, Y. Yue, S. Li, N. Chai, B. Mai, J. Meng, Y.-B. Cheng, X. Wang, Sol. RRL 2022, 6, 2200359.

[54]

T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M. J. Johansson, I. J. Mcpherson, H. Rensmo, J. M. Ball, M. M. Lee, H. J. Snaith, ACS Nano 2014, 8, 7147.

[55]

E. Serpetzoglou, I. Konidakis, G. Kakavelakis, T. Maksudov, E. Kymakis, E. Stratakis, ACS Appl. Mater. Interfaces 2017, 9, 43910.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

254

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/