Chloride-Ion Blocking in Seawater Electrolysis: Narrating the Tale of Likes and Dislikes Between Anode and Ions

Ashish Gaur , Enkhtuvshin Enkhbayar , Jatin Sharma , Sungwook Mhin , HyukSu Han

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12817

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12817 DOI: 10.1002/eem2.12817
REVIEW

Chloride-Ion Blocking in Seawater Electrolysis: Narrating the Tale of Likes and Dislikes Between Anode and Ions

Author information +
History +
PDF

Abstract

Seawater is the most abundant source of molecular hydrogen. Utilizing the hydrogen reserves present in the seawater may inaugurate innovative strategies aimed at advancing sustainable energy and environmental preservation endeavors in the future. Recently, there has been a surge in study in the field addressing the production of hydrogen through the electrochemical seawater splitting. However, the performance and durability of the electrode have limitations due to the fact that there are a few challenges that need to be addressed in order to make the technology suitable for the industrial purpose. The active site blockage caused by chloride ions that are prevalent in seawater and chloride corrosion is the most significant issue; it has a negative impact on both the activity and the durability of the anode component. Addressing this particular issue is of upmost importance in the seawater splitting area. This review concentrates on the newly developed materials and techniques for inhibiting chloride ions by blocking the active sites, simultaneously preventing the chloride corrosion. It is anticipated that the concept will be advantageous for a large audience and will inspire researchers to study on this particular area of concern.

Keywords

chloride ion blocking / electrocatalysis / Lewis acid / oxygen evolution reaction / seawater electrolysis

Cite this article

Download citation ▾
Ashish Gaur, Enkhtuvshin Enkhbayar, Jatin Sharma, Sungwook Mhin, HyukSu Han. Chloride-Ion Blocking in Seawater Electrolysis: Narrating the Tale of Likes and Dislikes Between Anode and Ions. Energy & Environmental Materials, 2025, 8(1): e12817 DOI:10.1002/eem2.12817

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Q. Chen, X. F. Wu, Renew. Sust. Energ. Rev. 2017, 69, 735.

[2]

S. Singh, in Energy (Eds: P. Singh, S. Singh, G. Kumar, P. Baweja), Wiley, Hoboken, NJ 2021, pp. 1-17.

[3]

H. Wang, L. Chen, L. Tan, X. Liu, Y. Wen, W. Hou, T. Zhan, J. Colloid Interface Sci. 2022, 613, 349.

[4]

T. Yang, H. Lv, Q. Quan, X. Li, H. Lu, X. Cui, G. Liu, L. Jiang, Appl. Surf. Sci. 2023, 615, 156360.

[5]

C. Yang, Z. Wu, Z. Zhao, Y. Gao, T. Ma, C. He, C. Wu, X. Liu, X. Luo, S. Li, C. Cheng, C. Zhao, Small 2023, 19, 2206949.

[6]

H. Zhao, D. Lu, J. Wang, W. Tu, D. Wu, S. W. Koh, P. Gao, Z. J. Xu, S. Deng, Y. Zhou, B. You, H. Li, Nat. Commun. 2021, 12, 2008.

[7]

H. Tüysüz, Acc. Chem. Res. 2024, 57, 558.

[8]

Z. Cui, Z. Yan, J. Yin, W. Wang, M.-E. Yue, Z. Li, J. Colloid Interface Sci. 2023, 652, 1117.

[9]

R. Liu, M. Sun, X. Liu, Z. Lv, X. Yu, J. Wang, Y. Liu, L. Li, X. Feng, W. Yang, B. Huang, B. Wang, Angew. Chem. Int. Ed. 2023, 62, e202312644.

[10]

J. Zhu, R. Lu, W. Shi, L. Gong, D. Chen, P. Wang, L. Chen, J. Wu, S. Mu, Y. Zhao, Energy Environ. Mater. 2023, 6, e12318.

[11]

M. Wappler, D. Unguder, X. Lu, H. Ohlmeyer, H. Teschke, W. Lueke, Int. J. Hydrog. Energy 2022, 47, 33551.

[12]

J. Zhu, J. Chi, T. Cui, L. Guo, S. Wu, B. Li, J. Lai, L. Wang, Appl. Catal. B Environ. 2023, 328, 122487.

[13]

C. Fu, W. Hao, J. Fan, Q. Zhang, Y. Guo, J. Fan, Z. Chen, G. Li, Small 2023, 19, 2205689.

[14]

R. Liang, J. Fan, F. Lei, P. Li, C. Fu, Z. Lu, W. Hao, J. Colloid Interface Sci. 2023, 645, 227.

[15]

W. Shi, J. Zhu, L. Gong, D. Feng, Q. Ma, J. Yu, H. Tang, Y. Zhao, S. Mu, Small 2022, 18, 2205683.

[16]

Z. Yu, L. Liu, Adv. Mater. 2023, 36, 2308647.

[17]

B. Parkinson, P. Balcombe, J. F. Speirs, A. D. Hawkes, K. Hellgardt, Energy Environ. Sci. 2019, 12, 19.

[18]

Global Hydrogen Review 2023 -Analysis. IEA. https://www.iea.org/reports/global-hydrogen-review-2023 (accessed February, 2024).

[19]

D. Wu, B. Liu, R. Li, D. Chen, W. Zeng, H. Zhao, Y. Yao, R. Qin, J. Yu, L. Chen, J. Zhang, B. Li, S. Mu, Small 2023, 19, 2300030.

[20]

D. Feng, P. Wang, R. Qin, W. Shi, L. Gong, J. Zhu, Q. Ma, L. Chen, J. Yu, S. Liu, S. Mu, Adv. Sci. 2023, 10, 2300342.

[21]

S. Gopalakrishnan, V. Saranya, G. Anandha Babu, S. Harish, E. Senthil Kumar, M. Navaneethan, J. Alloys Compd. 2023, 965, 171124.

[22]

M. Ning, Y. Wang, L. Wu, L. Yang, Z. Chen, S. Song, Y. Yao, J. Bao, S. Chen, Z. Ren, Nano Lett. 2023, 15, 157.

[23]

H. Zhang, J. Diao, M. Ouyang, H. Yadegari, M. Mao, M. Wang, G. Henkelman, F. Xie, D. J. Riley, ACS Catal. 2023, 13, 1349.

[24]

S. G. Simoes, J. Catarino, A. Picado, T. F. Lopes, S. Di Berardino, F. Amorim, F. Gírio, C. M. Rangel, T. Ponce De Leão, J. Clean. Prod. 2021, 315, 128124.

[25]

W. Yu, H. Liu, Y. Zhao, Y. Fu, W. Xiao, B. Dong, Z. Wu, Y. Chai, L. Wang, Nano Res. 2023, 16, 6517.

[26]

M. Xiao, C. Wu, J. Zhu, C. Zhang, Y. Li, J. Lyu, W. Zeng, H. Li, L. Chen, S. Mu, Nano Res. 2023, 16, 8945.

[27]

H. Zhang, S. Geng, M. Ouyang, H. Yadegari, F. Xie, D. J. Riley, Adv. Sci. 2022, 9, 2200146.

[28]

H.-M. Zhang, L. Zuo, Y. Gao, J. Guo, C. Zhu, J. Xu, J. Sun, J. Mater. Sci. Technol. 2024.

[29]

Z. Li, X. He, Q. Qian, Y. Zhu, Y. Feng, W. Wan, G. Zhang, Adv. Funct. Mater. 2023, 33, 2304079.

[30]

Y. Song, M. Sun, S. Zhang, X. Zhang, P. Yi, J. Liu, B. Huang, M. Huang, L. Zhang, Adv. Funct. Mater. 2023, 33, 2214081.

[31]

X. Zhang, Q. Yang, L. Zhang, J. Li, S. Sun, Y. Yang, Y. Sun, X. Sun, Nanotechnology 2024, 35, 105702.

[32]

S. S. Veroneau, A. C. Hartnett, A. E. Thorarinsdottir, D. G. Nocera, ACS Appl. Energy Mater. 2022, 5, 1403.

[33]

S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, ACS Energy Lett. 2019, 4, 933.

[34]

S.-W. Xu, J. Li, N. Zhang, W. Shen, Y. Zheng, P. Xi, Chem. Commun. 2023, 59, 9792.

[35]

P. Zhang, Y. Huo, F. Wang, F. Fang, D. Sun, ACS Appl. Energy Mater. 2023, 6, 7636.

[36]

H. Jin, J. Xu, H. Liu, H. Shen, H. Yu, M. Jaroniec, Y. Zheng, S.-Z. Qiao, Sci. Adv. 2023, 9, eadi7755.

[37]

M. N. Soliman, F. Z. Guen, S. A. Ahmed, H. Saleem, M. J. Khalil, S. J. Zaidi, Process. Saf. Environ. Prot. 2021, 147, 589.

[38]

J. N. Hausmann, R. Schlögl, P. W. Menezes, M. Driess, Energy Environ. Sci. 2021, 14, 3679.

[39]

X. Liu, J. Chi, H. Mao, L. Wang, Adv. Energy Mater. 2023, 13, 2301438.

[40]

Q. Yang, Y. Yu, X. Bi, ACS Sustain. Chem. Eng. 2023, 11, 14197.

[41]

Q. Zhang, K. Lian, Q. Liu, G. Qi, S. Zhang, J. Luo, X. Liu, J. Colloid Interface Sci. 2023, 646, 844.

[42]

C. Feng, M. Chen, Y. Zhou, Z. Xie, X. Li, P. Xiaokaiti, Y. Kansha, A. Abudula, G. Guan, J. Colloid Interface Sci. 2023, 645, 724.

[43]

S. J. Kim, S. H. Ko, K. H. Kang, J. Han, Nat. Nanotechnol. 2010, 5, 297.

[44]

G. M. Marion, F. J. Millero, M. F. Camões, P. Spitzer, R. Feistel, C.-T. A. Chen, Mar. Chem. 2011, 126, 89.

[45]

M. N. Quigley, F. Vernon, J. Chem. Educ. 1996, 73, 671.

[46]

J. Li, M. Song, Y. Hu, Y. Zhu, J. Zhang, D. Wang, Small Methods 2023, 7, 2201616.

[47]

Y. Wang, P. Yang, Y. Gong, D. Liu, S. Liu, W. Xiao, Z. Xiao, Z. Li, Z. Wu, L. Wang, Chem. Eng. J. 2023, 468, 143833.

[48]

D. Li, Z. Guo, R. Zhao, H. Ren, Y. Huang, Y. Yan, W. Cui, X. Yao, J. Colloid Interface Sci. 2024, 653, 1725.

[49]

Y. Xu, Y. Fo, H. Lv, X. Cui, G. Liu, X. Zhou, L. Jiang, ACS Appl. Mater. Interfaces 2022, 14, 10246.

[50]

D. Zhao, X. Liu, W. Zhang, X. Wu, Y.-R. Cho, Small Methods, 2023.

[51]

Z. Zhao, J. Sun, X. Li, Z. Zhang, X. Meng, Appl. Catal. B Environ. 2024, 340, 123277.

[52]

J. Dong, C. Yu, H. Wang, L. Chen, H. Huang, Y. Han, Q. Wei, J. Qiu, J. Energy Chem. 2024, 90, 486.

[53]

L.-W. Shen, Y. Wang, J.-B. Chen, G. Tian, K.-Y. Xiong, C. Janiak, D. Cahen, X.-Y. Yang, Nano Lett. 2023, 23, 1052.

[54]

J. Li, F. Xu, K. Wang, J. He, Y. Wang, L. Lei, M. Zhu, L. Zhuang, Z. Xu, Chem. Eng. Sci. 2023, 267, 118366.

[55]

J. Fan, X. Ma, J. Xia, L. Zhang, Q. Bi, W. Hao, J. Colloid Interface Sci. 2024, 657, 393.

[56]

H. Yang, X. Wang, S. Xia, S. Zhang, R. Zhang, X. Li, X. Yu, X. Zhang, L. Bai, Adv. Energy Mater. 2023, 13, 2302727.

[57]

Y. Chen, X. Zhao, Q. Zhang, X. Miao, Y. Chen, W. Yang, Q. Pan, Int. J. Hydrog. Energy 2023, 48, 3759.

[58]

R. Andaveh, A. Sabour Rouhaghdam, J. Ai, M. Maleki, K. Wang, A. Seif, G. Barati Darband, J. Li, Appl. Catal. B Environ. 2023, 325, 122355.

[59]

X. Wang, X. Han, R. Du, C. Xing, X. Qi, Z. Liang, P. Guardia, J. Arbiol, A. Cabot, J. Li, ACS Appl. Mater. Interfaces 2022, 14, 41924.

[60]

Z. Zhao, H. Zhao, X. Du, X. Zhang, Int. J. Hydrog. Energy 2024, 49, 1528.

[61]

Y. Wang, W. Yu, B. Zhou, W. Xiao, J. Wang, X. Wang, G. Xu, B. Li, Z. Li, Z. Wu, L. Wang, J. Mater. Chem. A 2023, 11, 1886.

[62]

H. Chen, S. Zhang, Q. Liu, P. Yu, J. Luo, G. Hu, X. Liu, Inorg. Chem. Commun. 2022, 146, 110170.

[63]

W. Hao, C. Fu, Y. Wang, K. Yin, H. Yang, R. Yang, Z. Chen, J. Energy Chem. 2022, 75, 26.

[64]

B. Jiang, Z. Wang, H. Zhao, X. Wang, X. Mao, A. Huang, X. Zhou, K. Yin, K. Sheng, J. Wang, Nanoscale 2023, 15, 19703.

[65]

X. Zhang, C. Feng, Z. Fan, B. Zhang, Y. Xiao, A. Mavrič, N. Pastukhova, M. Valant, Y.-F. Han, Y. Li, Inorg. Chem. Front. 2023, 10, 3103.

[66]

B. Xu, J. Liang, X. Sun, X. Xiong, Green Chem. 2023, 25, 3767.

[67]

Direct Seawater Electrolysis: From Catalyst Design to Device Applications -Fei -2024 -Advanced Materials -Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202309211 (accessed June, 2024).

[68]

F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun, J. Qiu, Nat. Commun. 2021, 12, 4182.

[69]

F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, ChemSusChem 2016, 9, 962.

[70]

J. Jin, J. Yin, Y. Hu, Y. Zheng, H. Liu, X. Wang, P. Xi, C.-H. Yan, Angew. Chem. Int. Ed. 2024, 63, e202313185.

[71]

X. Liu, X. Wang, K. Li, J. Tang, J. Zhu, J. Chi, J. Lai, L. Wang, Angew. Chem. Int. Ed. 2024, 63, e202316319.

[72]

V. H. Hoa, M. Austeria, H. Thi Dao, M. Mai, D. H. Kim, Appl. Catal. B Environ. 2023, 327, 122467.

[73]

A. Malek, Y. Xue, X. Lu, Angew. Chem. Int. Ed. 2023, 62, e202309854.

[74]

Z. Lu, H. Yang, G. Qi, Q. Liu, L. Feng, H. Zhang, J. Luo, X. Liu, Small 2023, 20, 2308841.

[75]

J. Zhu, B. Mao, B. Wang, M. Cao, Appl. Catal. B Environ. 2024, 344, 123658.

[76]

H. Qi, K. Huang, F. Pan, R. Ma, C. Lian, H. Liu, J. Hu, Ind. Eng. Chem. Res. 2023, 62, 19674.

[77]

T. Li, X. Zhao, M. Getaye Sendeku, X. Zhang, L. Xu, Z. Wang, S. Wang, X. Duan, H. Liu, W. Liu, D. Zhou, H. Xu, Y. Kuang, X. Sun, Chem. Eng. J. 2023, 460, 141413.

[78]

L. Shao, X. Han, L. Shi, T. Wang, Y. Zhang, Z. Jiang, Z. Yin, X. Zheng, J. Li, X. Han, Y. Deng, Adv. Energy Mater. 2024, 14, 2303261.

[79]

S. Jung Kim, H. Choi, J. Ho Ryu, K. Min Kim, S. Mhin, A. Kumar Nayak, J. Bang, M. Je, G. Ali, K. Yoon Chung, K.-H. Na, W.-Y. Choi, S. Yeo, J. Uk Jang, H. Han, J. Energy Chem. 2023, 81, 82.

[80]

H. Liu, X. Zhou, C. Ye, M. Ye, J. Shen, Appl. Catal. B Environ. 2024, 343, 123560.

[81]

P. W. Ayers, J. Chem. Phys. 2005, 122, 141102.

[82]

P. C. Stair, J. Am. Chem. Soc. 1982, 104, 4044.

[83]

C. Laurence, J. Graton, J.-F. Gal, J. Chem. Educ. 2011, 88, 1651.

[84]

B. Saville, Angew. Chem. Int. Ed. Engl. 1967, 6, 928.

[85]

J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao, K. Du, M. Jaroniec, S.-Z. Qiao, T. Ling, Nat. Energy 2023, 8, 264.

[86]

Y. Wu, J. Zheng, X. Zhou, T. Tu, Y. Liu, P. Zhang, L. Tan, S. Zhao, Inorg. Chem. Front. 2023, 10, 2444.

[87]

P. Li, S. Zhao, Y. Huang, Q. Huang, B. Xi, X. An, S. Xiong, Adv. Energy Mater. 2024, 14, 2303360.

[88]

M. Hamze, M. Rezaei, S. H. Tabaian, J. Electroanal. Chem. 2023, 948, 117823.

[89]

G. Bahuguna, B. Filanovsky, F. Patolsky, Nano Energy 2023, 111, 108439.

[90]

Y. Kuang, M. J. Kenney, Y. Meng, W.-H. Hung, Y. Liu, J. E. Huang, R. Prasanna, P. Li, Y. Li, L. Wang, M.-C. Lin, M. D. McGehee, X. Sun, H. Dai, Proc. Natl. Acad. Sci. USA 2019, 116, 6624.

[91]

A. R. Jadhav, A. Kumar, J. Lee, T. Yang, S. Na, J. Lee, Y. Luo, X. Liu, Y. Hwang, Y. Liu, H. Lee, J. Mater. Chem. A 2020, 8, 24501.

[92]

J. G. Vos, T. A. Wezendonk, A. W. Jeremiasse, M. T. M. Koper, J. Am. Chem. Soc. 2018, 140, 10270.

[93]

W. Xu, Z. Wang, P. Liu, X. Tang, S. Zhang, H. Chen, Q. Yang, X. Chen, Z. Tian, S. Dai, L. Chen, Z. Lu, Adv. Mater. 2024, 36, 2306062.

[94]

W. Ou, W. Zhang, H. Qin, W. Zhou, Y. Tang, Q. Gao, J. Colloid Interface Sci. 2024, 655, 852.

[95]

E. Enkhtuvshin, S. Yeo, H. Choi, K. M. Kim, B. An, S. Biswas, Y. Lee, A. K. Nayak, J. U. Jang, K. Na, W. Choi, G. Ali, K. H. Chae, M. Akbar, K. Y. Chung, K. Yoo, Y. Chung, T. H. Shin, H. Kim, C. Chung, H. Han, Adv. Funct. Mater. 2023, 33, 2214069.

[96]

Y. Du, Q. Li, M. Liu, D. Liu, W. Xiao, Z. Xiao, Z. Li, Y. Yamauchi, S. M. Osman, Z. Wu, L. Wang, Chem. Eng. J. 2023, 475, 146057.

[97]

H. Liu, W. Shen, H. Jin, J. Xu, P. Xi, J. Dong, Y. Zheng, S. Qiao, Angew. Chem. Int. Ed. 2023, 62, e202311674.

[98]

L. Zhuang, J. Li, K. Wang, Z. Li, M. Zhu, Z. Xu, Adv. Funct. Mater. 2022, 32, 2201127.

[99]

M. Yu, J. Li, F. Liu, J. Liu, W. Xu, H. Hu, X. Chen, W. Wang, F. Cheng, J. Energy Chem. 2022, 72, 361.

[100]

S. Pal, K. Shimizu, S. Khatun, S. Singha, S. Watanabe, P. Roy, J. Mater. Chem. A 2023, 11, 12151.

[101]

M. G. Kim, A. Gaur, J. U. Jang, K.-H. Na, W.-Y. Choi, H. Han, Int. J. Energy Res. 2024, 2024, 9996841.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/