Rapid Discovery of Gas Response in Materials Via Density Functional Theory and Machine Learning

Shasha Gao , Yongchao Cheng , Lu Chen , Sheng Huang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12816

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12816 DOI: 10.1002/eem2.12816
RESEARCH ARTICLE

Rapid Discovery of Gas Response in Materials Via Density Functional Theory and Machine Learning

Author information +
History +
PDF

Abstract

In this study, a framework for predicting the gas-sensitive properties of gas-sensitive materials by combining machine learning and density functional theory (DFT) has been proposed. The framework rapidly predicts the gas response of materials by establishing relationships between multisource physical parameters and gas-sensitive properties. In order to prove its effectiveness, the perovskite Cs3Cu2I5 has been selected as the representative material. The physical parameters before and after the adsorption of various gases have been calculated using DFT, and then a machine learning model has been trained based on these parameters. Previous studies have shown that a single physical parameter alone is not enough to accurately predict the gas sensitivity of materials. Therefore, a variety of physical parameters have been selected for machine learning, and the final machine learning model achieved 92% accuracy in predicting gas sensitivity. It is important to note that although there have been no previous reports on the response of Cs3Cu2I5 to hydrogen sulfide, the resulting model predicts the gas response of H2S; it is subsequently confirmed experimentally. This method not only enhances the understanding of the gas sensing mechanism, but also has a universal nature, making it suitable for the development of various new gas-sensitive materials.

Keywords

density functional theory / gas-sensitive materials / machine learning

Cite this article

Download citation ▾
Shasha Gao, Yongchao Cheng, Lu Chen, Sheng Huang. Rapid Discovery of Gas Response in Materials Via Density Functional Theory and Machine Learning. Energy & Environmental Materials, 2025, 8(1): e12816 DOI:10.1002/eem2.12816

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Li, W. Zeng, Y. Li, Sensors Actuators B Chem. 2022, 359, 131579.

[2]

C. Lou, G. Lei, X. Liu, J. Xie, Z. Li, W. Zheng, N. Goel, M. Kumar, J. Zhang, Coord. Chem. Rev. 2022, 452, 214280.

[3]

L. Deng, X. Ding, D. Zeng, S. Zhang, C. Xie, IEEE Sensors J. 2012, 12, 2209.

[4]

V. Amiri, H. Roshan, A. Mirzaei, G. Neri, A. I. Ayesh, Sensors 2020, 20, 3096.

[5]

S. Zhang, M.-J. Yang, K. Liang, A. Turak, B. Zhang, D. Meng, C. Wang, F. Qu, W. Cheng, M. Yang, Sensors Actuators B Chem. 2019, 290, 59.

[6]

A. Agrawal, A. Choudhary, APL Mater. 2016, 4, 053208.

[7]

G. L. W Hart, T. Mueller, C. Toher, S. Curtarolo, Nat. Rev. Mater. 2021, 6, 730.

[8]

T. Lookman, P. V. Balachandran, D. Xue, R. Yuan, NPJ Comput. Mater. 2019, 5, 21.

[9]

J. Schmidt, M. R. G. Marques, S. Botti, M. A. L. Marques, NPJ Comput. Mater. 2019, 5, 83.

[10]

Y. Liu, C. Niu, Z. Wang, Y. Gan, Y. Zhu, S. Sun, T. Shen, J. Mater. Sci. Technol. 2020, 57, 113.

[11]

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, NPJ Comput. Mater. 2017, 3, 2057.

[12]

E. M. Askenazi, E. A. Lazar, I. Grinberg, J. Chem. Inf. Model. 2023, 63, 7350.

[13]

Y. Luo, S. Bag, O. Zaremba, A. Cierpka, J. Andreo, S. Wuttke, P. Friederich, M. Tsotsalas, Angew. Chem. Int. Ed. 2022, 61, e202200242.

[14]

Y. Wang, X. Wang, H. Zhang, S. Gao, W. Xu, Y. Zhao, M. Jiao, S. Huang, X. Gu, New J. Chem. 2023, 47, 19077.

[15]

Y. Zhuang, J. Zhu, D. Gao, S. Gao, Z. Yang, S. Huang, X. He, IEEE Sensors J. 2023, 23, 30504.

[16]

P. V. Balachandran, B. Kowalski, A. Sehirlioglu, T. Lookman, Nat. Commun. 2018, 9, 1668.

[17]

D. Hu, Z. Yang, S. Huang, Sens. Actuators A Phys. 2024, 369, 115162.

[18]

X. Qiang, D. Kang, H. Xie, Q.-R. Zhang, B.-Q. Liang, Z.-K. Peng, W. Li, Chin. Phys. 2021, 70, 157101.

[19]

X. Xu, S. Wang, W. Liu, Y. Chen, S. Ma, P. Yun, Sensors Actuators B Chem. 2021, 333, 129616.

[20]

X. Xu, S. Wang, Y. Chen, W. Liu, X. Wang, H. Jiang, S. Ma, P. Yun, ACS Appl. Mater. Interfaces 2022, 14, 39524.

[21]

X. Xu, H. Jiang, W. Liu, S. Wang, X. Wang, M. Wang, W. Ma, S. Ma, J. Wei, J. Appl. Phys. 2024, 135, 084503.

[22]

Y. Han, Q. Shang, J. Yao, Y. Ji, Cell Death Dis. 2019, 10, 293.

[23]

R.-X. Zhang, X.-H. Zong, T.-T. Yu, Y.-X. Ge, S. Hu, W.-J. Liang, Chin. Phys. 2022, 71, 180702.

[24]

H. Tai, S. Wang, Z. Duan, Y. Jiang, Sensors Actuators B Chem. 2020, 318, 128104.

[25]

J. Li, S. Gao, J. Zhu, S. Huang, ACS Appl. Electr. Mater. 2024, 6, 1129.

[26]

R. Roccanova, A. Yangui, G. Seo, T. D. Creason, Y. Wu, D. Y. Kim, M.-H. Du, B. Saparov, ACS Mater. Lett. 2019, 1, 459.

[27]

J. Xiao, H.-L. Zhang, Acta Phys. -Chim. Sin. 1894, 2016, 32.

[28]

M. Qiu-Yan, Z. Song, J. Tao, Z. Hong-Yun, L. Xian-Xu, W. Jia-Yin, Chin. Phys. 2023, 72, 127301.

[29]

M. Tsuji, M. Sasase, S. Iimura, J. Kim, H. Hosono, J. Am. Chem. Soc. 2023, 145, 11650.

[30]

Q. Zhu, Daxue Huaxue 2020, 36, 2007029.

[31]

H. Jing-Fang, Z. Shu-Kai, Z. Peng-Li, S. Ru-Qian, Y. Xiao-Bing, Acta Phys. Sin. 2014, 63, 53102.

[32]

L. Ren Yun-Peng, L. Q Yu-Xiang, Acta Phys. -Chim. Sin. 2007, 23, 1728.

[33]

W.-H. Luo, D.-Q. Meng, H.-C. Chen, Chin. Phys. 2008, 57, 160.

[34]

L. Xiao-Lin, Y. Kun, H. Jia-Le, L. Hong-Feng, Z. Jian-Bo, Z. Yang, Chin. Phys. 2022, 71, 17103.

[35]

X. Liao, R. Lu, L. Xia, Q. Liu, H. Wang, K. Zhao, Z. Wang, Y. Zhao, Energy Environ. Mater. 2021, 5, 157.

[36]

W. Ai, X. Hu, L. Pan, C. Chen, Y. Wang, X. Shen, Chin. Phys. 2019, 68, 197101.

[37]

T. Liang, Y.-Y. Wang, G.-H. Liu, W.-Y. Fu, H.-Z. Wang, J.-F. Chen, Chin. Phys. 2021, 70, 080701.

[38]

K. Liu, L. Lin, K. Xie, P. Shi, D. Xu, Langmuir 2023, 39, 8879.

[39]

Z. Cui, H. Wu, K. Yang, X. Wang, Y. Lv, Sens. Actuators A Phys. 2024, 366, 114954.

[40]

R.-S. Meng, M. Cai, J.-K. Jiang, Q.-H. Liang, X. Sun, Q. Yang, C.-J. Tan, X.-P. Chen, IEEE Electron. Dev. Lett. 2017, 38, 134.

[41]

J. Liu, Y. Wei, P. Li, Y. Zhao, R. Zou, J. Phys. Chem. C 2017, 121, 13249.

[42]

B. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang, J. He, Science 2022, 377, 208.

[43]

H. Shan, W. Xuan, Z. Li, D. Hu, X. Gu, S. Huang, ACS Appl. Nano Mater. 2022, 5, 6801.

[44]

W. Xuan, L. Zheng, L. Cao, S. Miao, D. Hu, L. Zhu, Y. Zhao, Y. Qiang, X. Gu, S. Huang, ACS Sens. 2023, 8, 1252.

[45]

J. Zhang, G. Bai, Y. Xu, W. Wu, Y. Liu, B. Teng, Daxue Huaxue 2022, 37, 2107125.

[46]

X. Wang, C. Tang, Z. Xie, R. Yu, J. Yan, C. Jiang, Chin. Phys. 2024, 73, 013101.

[47]

G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.

[48]

J.-P. Sun, K.-L. Zhou, X.-D. Zhou, Chin. Phys. 2016, 65, 018201.

[49]

J. Zhu, G. Xiao, X. Zuo, Nano-Micro Lett. 2020, 12, 120.

[50]

Y. Zhang, W. Shen, K. Li, Y. Li, Y. Lin, React. Kinet. Mech. Catal. 2023, 137, 177.

[51]

Y.-B. He, J.-F. Jia, H.-S. Wu, Chin. Phys. 2015, 64, 203101.

[52]

P. Kumar, B. S. Bhadoria, S. Kumar, S. Bhowmick, Y. S. Chauhan, A. Agarwal, Phys. Rev. 2016, 93, 195428.

[53]

K. T. Chan, J. B. Neaton, M. L. Cohen, Phys. Rev. B 2008, 77, 5430.

[54]

R. S. Mulliken, Phys. Rev. 1932, 41, 751.

[55]

D. M. Ruthven, Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, Hoboken, NJ 2001, p. 531.

[56]

R. Zhao, T. Wang, Y. An, X. Dai, C. Xia, J. Phys. Condens. Matter 2021, 33, 165501.

[57]

N. M. R Peres, F. Guinea, A. H. Castro Neto, Ann. Phys. (N. Y.) 2006, 321, 1559.

[58]

W. Ji, Z. Shen, Q. Tang, B. Yang, M. Fan, Chem. Eng. J. 2016, 289, 349.

[59]

R. Kruse, C. Borgelt, F. Klawonn, C. Moewes, M. Steinbrecher, P. Held, Computational Intelligence, Springer Science & Business Media, Berlin, Germany 2013.

[60]

A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, S. D. Brown, J. Chemom. 2004, 18, 275.

[61]

S. J. Rigatti, J. Insur. Med. 2017, 47, 31.

[62]

A. Natekin, A. Knoll, Front. Neurorobot. 2013, 7, 21.

[63]

L. Peterson, Scholarpedia 1883, 2009, 4.

[64]

I. Wickramasinghe, H. Kalutarage, Soft. Comput. 2020, 25, 2277.

[65]

M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, B. Scholkopf, IEEE Intell. Syst. Their Appl. 1998, 13, 18.

[66]

R. A. Meyers, Encyclopedia of Physical Science and Technology, Academic Press, Cop, San Diego 2001.

[67]

T. Chen, C. Guestrin, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -KDD’16, Association for Computing Machinery, New York, NY, United States. 2016, 785.

[68]

J. Fan, X. Ma, L. Wu, F. Zhang, X. Yu, W. Zeng, Agric. Water Manag. 2019, 225, 105758.

[69]

A. V. Dorogush, V. Ershov, A. Gulin, arXiv 2023. https://arxiv.org/abs/1810.11363 (accessed: October, 2023).

[70]

T. Hastie, S. Rosset, J. Zhu, H. Zou, Stat. Its Interface 2009, 2, 349.

[71]

A. Berrouachedi, R. Jaziri, G. Bernard, Lect. Notes Comput. Sci 2019, 11953, 117.

[72]

Y. Chychkarov, A. Serhiienko, I. Syrmamiikh, A. Kargin, Comp. Model. Intell. Syst. 2021, 2864, 496.

[73]

J. T. Townsend, Percept. Psychophys. 1971, 9, 40.

[74]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[75]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[76]

D. R. Hamann, Phys. Rev. B 2013, 88, 085117.

[77]

J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.

[78]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/