Bifunctionally Hydrophobic MOF-Supported Platinum Catalyst for the Removal of Ultralow Concentration Hydrogen Isotope

Huiryung Heo , Jeong-un Jang , Euna Jeong , Hyung-Ju Kim , Young Jin Kim , Chan Woo Park , Jungseob So , Dong-Yeun Koh

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12815

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12815 DOI: 10.1002/eem2.12815
RESEARCH ARTICLE

Bifunctionally Hydrophobic MOF-Supported Platinum Catalyst for the Removal of Ultralow Concentration Hydrogen Isotope

Author information +
History +
PDF

Abstract

Water often presents significant challenges in catalysts by deactivating active sites, poisoning the reaction, and even degrading composite structure. These challenges are amplified when the water participates as a reactant and is fed as a liquid phase, such as trickle bed-type reactors in a hydrogen-water isotope exchange (HIE) reaction. The key balance in such multiphase reactions is the precise control of catalyst design to repel bulk liquid water while diffusing water vapor. Herein, a platinum-incorporated metal-organic framework (MIL-101) based bifunctional hydrophobic catalyst functionalized with long alkyl chains (C12, dodecylamine) and further manufactured with poly(vinylidene fluoride), Pt@MIL-101-12/PVDF, has been developed which can show dramatically improved catalytic activity under multi-phase reactions involving hydrogen gas and liquid water. Pt@MIL-101-12/PVDF demonstrates enhanced macroscopic water-blocking properties, with a notable reduction of over 65% in water adsorption capacity and newly introduced liquid water repellency, while exhibiting a negligible increase in mass transfer resistance, i.e., bifunctional hydrophobicity. Excellent catalytic activity, evaluated via HIE reaction, and its durability underscore the impact of bifunctional hydrophobicity. In situ DRIFTS analysis elucidates water adsorption/desorption dynamics within the catalyst composite, highlighting reinforced water diffusion at the microscopic level, affirming the catalyst’s bifunctionality in different length scales. With demonstrated radiation resistance, Pt@MIL-101-12/PVDF emerges as a promising candidate for isotope exchange reactions.

Keywords

bifunctional hydrophobic catalyst / hydrogen-water isotope exchange / hydrophobic modification / metal–organic framework / tritium removal

Cite this article

Download citation ▾
Huiryung Heo, Jeong-un Jang, Euna Jeong, Hyung-Ju Kim, Young Jin Kim, Chan Woo Park, Jungseob So, Dong-Yeun Koh. Bifunctionally Hydrophobic MOF-Supported Platinum Catalyst for the Removal of Ultralow Concentration Hydrogen Isotope. Energy & Environmental Materials, 2025, 8(2): e12815 DOI:10.1002/eem2.12815

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T.Ahmad, D.Zhang, Energy Rep. 2020, 6, 1973.

[2]

Z.Liu, P.Ciais, Z.Deng, R. Lei, S. J.Davis, S.Feng, B.Zheng, D.Cui, X. Dou, B.Zhu, R.Guo, P.Ke, T.Sun, C. Lu, P.He, Y.Wang, X.Yue, Y.Wang, Y. Lei, H.Zhou, Z.Cai, Y.Wu, R.Guo, T. Han, J.Xue, O.Boucher, E.Boucher, F.Chevallier, K.Tanaka, Y.Wei, H.Zhong, C. Kang, N.Zhang, B.Chen, F.Xi, M.Liu, F.-M. Bréon, Y.Lu, Q.Zhang, D. Guan, P.Gong, D. M.Kammen, K.He, H. J.Schellnhuber, Nat. Commun. 2020, 11, 5172.

[3]

IEA, World Energy Outlook 2021, OECD Publishing, Paris, October 2021.

[4]

M.Gill, F.Livens, A.Peakman, in Future Energy (Second Edition) (Ed: T. M. Letcher), Elsevier, Boston 2014, pp. 181–198.

[5]

S.Okada, N.Momoshima, Health Phys. 1993, 65, 595.

[6]

B.Nie, S.Fang, M.Jiang, L. Wang, M.Ni, J.Zheng, Z.Yang, F.Li, Renew. Sustain. Energy Rev. 2021, 135, 110188.

[7]

P. A.Thompson, N.-O. A. Kwamena, M.Ilin, M.Wilk, I. D.Clark, J. Environ. Radioact. 2015, 140, 105.

[8]

H.Kim, B.Kumar Singh, W.Um, J. Ind. Eng. Chem. 2023, 121, 264.

[9]

G.Larsen, D.Babineau, Fusion Eng. Des. 2020, 158, 111690.

[10]

M.Rethinasabapathy, S. M. Ghoreishian, S.-K.Hwang, Y.-K.Han, C.Roh, Y. S.Huh, Adv. Mater. 2023, 35, 2301589.

[11]

J.Yao, S.-C.Dong, B. S. T.Tam, C. W. Tang, ACS Appl. Mater. Interfaces 2023, 15, 7255.

[12]

S.Jung, W.-L.Cheung, S.-J.Li, M.Wang, W.Li, C.Wang, X. Song, G.Wei, Q.Song, S. S.Chen, W.Cai, M. Ng, W. K.Tang, M.-C.Tang, Nat. Commun. 2023, 14, 6481.

[13]

C.Chen, J.Hou, J.Li, X.Chen, C.Xiao, Q. Wang, Y.Gong, L.Yue, L.Zhao, G.Ran, X. Fu, X.Xia, H.Wang, Fusion Eng. Des. 2020, 153, 111460.

[14]

E. P.Magomedbekov, I. L. Rastunova, N. N.Kulov, Theor. Found. Chem. Eng. 2021, 55(1), 1.

[15]

M. D.Shapiro, C. M.Reed, Removal of Tritium from the Molten Salt Breeder Reactor Fuel, Massachusetts Institute of Technology, Oak Ridge, TN 1970.

[16]

A. N.Bukin, S. A.Marunich, Y. S.Pak, I. L.Rastunova, M. B.Rozenkevich, A. Y.Chebotov, Fusion Sci. Technol. 2022, 78, 595.

[17]

A. M.Bornea, G.Ana, O.Balteanu, D. Bogdan, G.Bulubasa, C.Bucur, I.Faurescu, D.Faurescu, A.Niculescu, I.Stefan, I.Vagner, E.Udrea, C.Varlam, F.Vasut, M.Vijulie, M.Zamfirache, Fusion Sci. Technol. 2023, 80, 365.

[18]

J. H.Rolston, J.Den Hartog, J. P.Butler, J. Phys. Chem. 1976, 80, 1064.

[19]

S. H.Sohn, K. J.Lee, J. Nucl. Sci. Technol. 2006, 43, 874.

[20]

S.Paek, D.-H.Ahn, H.-J.Choi, K.-R. Kim, M.Lee, S.-P.Yim, H.Chung, K.-M.Song, S. H. Sohn, Fusion Eng. Des. 2007, 82, 2252.

[21]

F.Huang, C.Meng, Int. J. Hydrogen Energy 2010, 35, 6108.

[22]

F.Vasut, A.Preda, M.Zamfirache, A. M.Bornea, I.Stefanescu, C.Pearsica, Fusion Sci. Technol. 2008, 54, 437.

[23]

H.Chang Li, Y.Chen, K.Fan, C. Fu, X.Liu, H.Ren, S. L.Yang, Int. J. Hydrogen Energy 2023, 48, 3520.

[24]

F.Vasut, A.Oubraham, A. M.Soare, A.Marinoiu, D.Ion-Ebrasu, M.Dragan, Fusion Eng. Des. 2019, 146, 149.

[25]

S.Hu, J.Hou, L.Xiong, K. Weng, T.Yang, Y.Luo, Sep. Purif. Technol. 2011, 77, 214.

[26]

Q.Fu, F.Xin, X.Yin, Y. Song, Y.Xu, Int. J. Hydrogen Energy 2021, 46, 22446.

[27]

Z.Lu, X.Fu, J.Hou, L. Yue, J.Li, G.Ran, C.Xiao, X.Wang, Cat. Com. 2023, 177, 106632.

[28]

Z.Lu, J.Li, X.Fu, J.Hou, G.Ran, C. Xiao, X.Wang, Int. J. Hydrogen Energy 2022, 47, 18080.

[29]

X.Fu, J.Hou, C.Chen, J. Li, L.Yue, X.Chen, L.Zhao, G.Ran, X. Xia, Y.Gong, W.Ding, C.Xiao, H.Wang, J. Hazard. Mater. 2019, 380, 120904.

[30]

Y.Li, H.-T.Wang, Y.-L.Zhao, J. Lv, X.Zhang, Q.Chen, J.-R.Li, Inorg. Chem. Commun. 2021, 130, 108741.

[31]

J.Shadmehr, S.Zeinali, M.Tohidi, J. Dispers. Sci. Technol. 2019, 40, 1423.

[32]

X.Cai, T.Lei, D.Sun, L. Lin, RSC Adv. 2017, 7, 15382.

[33]

E.Mazzotta, S.Rella, A.Turco, C. Malitesta, RSC Adv. 2015, 5, 83164.

[34]

I.Pollini, A.Mosser, J. C.Parlebas, Phys. Rep. 2001, 355(1), 1.

[35]

J.de Graaf, A. J.van Dillen, K. P.de Jong, D. C.Koningsberger, J. Catal. 2001, 203, 307.

[36]

S.Fei, A.Alizadeh, W.-L.Hsu, J.-J.Delaunay, H.Daiguji, J. Phys. Chem. C 2021, 125, 26755.

[37]

Y.Song, F.Xin, Y.Xu, Lab Chip 2020, 20, 2154.

[38]

S.Hu, L.Xiong, X.Ren, C. Wang, Y.Luo, Int. J. Hydrogen Energy 2009, 34, 8723.

[39]

J. F.Black, H. S.Taylor, J. Chem. Phys. 1943, 11, 395.

[40]

J.Gao, S.Fei, Y.-L.Ho, R. Matsuda, H.Daiguji, J.-J.Delaunay, J. Phys. Chem. C. Nanomater. Interfaces 2021, 125, 17786.

[41]

L.De Marco, W.Carpenter, H.Liu, R.Biswas, J. M.Bowman, A.Tokmakoff, J. Phys. Chem. Lett. 2016, 7, 1769.

[42]

H.Wang, H. D.Abruña, J. Am. Chem. Soc. 2023, 145, 18439.

[43]

M.-M., V.Chisté, C.Dulieu, E.Browne, C.Baglin, V.Chechev, N.Kuzmenko, R. L.Helmer, F.Kondev, T. D.Macmahon, Table of Radionuclides (Vol. 3-A=3 to 244), Bureau International Des Poids Et Mesures, Sèvres, France 2006.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

218

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/