A High-Performance Stretchable Triboelectric Nanogenerator Based on Polytetrafluoroethylene (PTFE) Particles

Jiawei Liu , Jinhui Wang , Yawen Wang , Zhilin Wu , Hongbiao Sun , Yan Yang , Lisheng Zhang , Xu Kou , Pengyuan Li , Wenbin Kang , Jiangxin Wang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12814

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12814 DOI: 10.1002/eem2.12814
RESEARCH ARTICLE

A High-Performance Stretchable Triboelectric Nanogenerator Based on Polytetrafluoroethylene (PTFE) Particles

Author information +
History +
PDF

Abstract

Triboelectric nanogenerators (TENGs) are emerging as new technologies to harvest electrical power from mechanical energy. With the distinctive working mechanism of triboelectric nanogenerators, they attract particular interest in healthcare monitoring, wearable electronics, and deformable energy harvesting, which raises the requirement for highly conformable devices with substantial energy outputs. Here, a simple, low-cost strategy for fabricating stretchable triboelectric nanogenerators with ultra-high electrical output is developed. The TENG is prepared using PTFE micron particles (PP-TENG), contributing a different electrostatic induction process compared to TENG based on dielectric films, which was associated with the dynamics of particle motions in PP-TENG. The generator achieved an impressive voltage output of 1000 V with a current of 25 µA over a contact area of 40 × 20 mm2. Additionally, the TENG exhibits excellent durability with a stretching strain of 500%, and the electrical output performance does not show any significant degradation even after 3000 cycles at a strain of 400%. The unique design of the device provides high conformability and can be used as a self-powered sensor for human motion detection.

Keywords

particles / stretchable electronics / triboelectric nanogenerators / wearable sensors

Cite this article

Download citation ▾
Jiawei Liu, Jinhui Wang, Yawen Wang, Zhilin Wu, Hongbiao Sun, Yan Yang, Lisheng Zhang, Xu Kou, Pengyuan Li, Wenbin Kang, Jiangxin Wang. A High-Performance Stretchable Triboelectric Nanogenerator Based on Polytetrafluoroethylene (PTFE) Particles. Energy & Environmental Materials, 2025, 8(1): e12814 DOI:10.1002/eem2.12814

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F.-R. Fan, Z.-Q. Tian, Z. Lin Wang, Nano Energy 2012, 1, 328.

[2]

C. Chen, L. Chen, Z. Wu, H. Guo, W. Yu, Z. Du, Z. L. Wang, Mater. Today 2020, 32, 84.

[3]

C. Yan, W. Deng, L. Jin, T. Yang, Z. Wang, X. Chu, H. Su, J. Chen, W. Yang, ACS Appl. Mater. Interfaces 2018, 10, 41070.

[4]

Y. Yang, H. Zhang, Z.-H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, Z. L. Wang, ACS Nano 2013, 7, 9213.

[5]

K. Tao, H. Yi, Y. Yang, L. Tang, Z. Yang, J. Wu, H. Chang, W. Yuan, Microsystems & Nanoengineering 2020, 6, 56.

[6]

Y. Gui, S. He, Y. Wang, J. Yang, Compos. A: Appl. Sci. Manuf. 2023, 168, 107492.

[7]

F. He, X. You, H. Gong, Y. Yang, T. Bai, W. Wang, W. Guo, X. Liu, M. Ye, A. C. S. Appl, Mater. Interfaces 2020, 12, 6442.

[8]

X. He, H. Zou, Z. Geng, X. Wang, W. Ding, F. Hu, Y. Zi, C. Xu, S. L. Zhang, H. Yu, M. Xu, W. Zhang, C. Lu, Z. L. Wang, Adv. Funct. Mater. 2018, 28, 1805540.

[9]

Y.-T. Jao, P.-K. Yang, C.-M. Chiu, Y.-J. Lin, S.-W. Chen, D. Choi, Z.-H. Lin, Nano Energy 2018, 50, 513.

[10]

D. Yang, Y. Ni, X. Kong, S. Li, X. Chen, L. Zhang, Z. L. Wang, ACS Nano 2021, 15, 14653.

[11]

T. He, H. Wang, J. Wang, X. Tian, F. Wen, Q. Shi, J. S. Ho, C. Lee, Adv. Sci. 2019, 6, 1901437.

[12]

S. Zhang, H. Yang, J. Li, Mater. Technol. 2023, 38, 2254613.

[13]

Z. Lin, J. Chen, X. Li, Z. Zhou, K. Meng, W. Wei, J. Yang, Z. L. Wang, ACS Nano 2017, 11, 8830.

[14]

C. Hou, J. Geng, Z. Yang, T. Tang, Y. Sun, F. Wang, H. Liu, T. Chen, L. Sun, Adv. Materials Technol. 2021, 6, 2000912.

[15]

A. Ahmed, S. L. Zhang, I. Hassan, Z. Saadatnia, Y. Zi, J. Zu, Z. L. Wang, Extreme Mech. Lett. 2017, 13, 25.

[16]

C. Ye, D. Liu, P. Chen, L. N. Y. Cao, X. Li, T. Jiang, Z. L. Wang, Adv. Mater. 2023, 35, 2209713.

[17]

D. Doganay, M. O. Cicek, M. B. Durukan, B. Altuntas, E. Agbahca, S. Coskun, H. E. Unalan, Nano Energy 2021, 89, 106412.

[18]

S. Liang, C. Li, M. Niu, P. Zhu, Z. Pan, Y. Mao, J. Phys. Mater. 2024, 7, 12001.

[19]

Y. Shi, F. Wang, J. Tian, S. Li, E. Fu, J. Nie, R. Lei, Y. Ding, X. Chen, Z. L. Wang, Sci. Adv. 2021, 7, eabe2943.

[20]

Q. Zhang, Z. Zhang, Q. Liang, F. Gao, F. Yi, M. Ma, Q. Liao, Z. Kang, Y. Zhang, Nano Energy 2019, 55, 151.

[21]

D. Kim, D. Heo, K. Cha, M. Song, J. Son, S. Kim, Z.-H. Lin, K. Choi, J. Chung, S. Lee, Nano Energy 2023, 107, 108130.

[22]

H. Moon, J. Chung, B. Kim, H. Yong, T. Kim, S. Lee, S. Lee, Nano Energy 2017, 31, 525.

[23]

W. Sun, B. Li, F. Zhang, C. Fang, Y. Lu, X. Gao, C. Cao, G. Chen, C. Zhang, Z. L. Wang, Nano Energy 2021, 85, 106012.

[24]

S. Y. Kuang, J. Chen, X. B. Cheng, G. Zhu, Z. L. Wang, Nano Energy 2015, 17, 10.

[25]

C. Ning, L. Tian, X. Zhao, S. Xiang, Y. Tang, E. Liang, Y. Mao, J. Mater. Chem. A 2018, 6, 19143.

[26]

T. Zhao, B. Niu, B. Liu, Z. Li, W. Yang, G. Xie, Y. Zhu, D. Chen, Y. Ma, C. Hu, Nano Energy 2023, 108, 108204.

[27]

W. Liu, X. Wang, Y. Wang, H. Xu, Y. Nan, J. Niu, J. Xiong, H. Yang, T. Liu, L. Yang, Adv. Sustain. Syst. 2023, 8, 2300430.

[28]

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, Z. L. Wang, Adv. Mater. 2014, 26, 6599.

[29]

K. Tao, Z. Chen, H. Yi, R. Zhang, Q. Shen, J. Wu, L. Tang, K. Fan, Y. Fu, J. Miao, W. Yuan, Nano-Micro Lett. 2021, 13, 123.

[30]

P. Cheng, H. Guo, Z. Wen, C. Zhang, X. Yin, X. Li, D. Liu, W. Song, X. Sun, J. Wang, Z. L. Wang, Nano Energy 2019, 57, 432.

[31]

S. Wu, J. Yang, Y. Wang, B. Liu, Y. Xiong, H. Jiao, Y. Liu, R. Bao, Z. L. Wang, Q. Sun, Adv. Sustain. Syst. 2023, 7, 2300135.

[32]

J. Seo, S. Hajra, M. Sahu, H. J. Kim, Mater. Lett. 2021, 304, 130674.

[33]

Y. Qi, G. Liu, T. Bu, J. Zeng, Z. Zhang, C. Zhang, Small 2022, 18, 2201754.

[34]

M. Jangra, A. Thakur, S. Dam, S. Hussain, J. Polym. Sci. 2023, 61, 334.

[35]

Z. Saadatnia, E. Esmailzadeh, H. E. Naguib, Adv. Eng. Mater. 2019, 21, 1700957.

[36]

J. Huang, X. Fu, G. Liu, S. Xu, X. Li, C. Zhang, L. Jiang, Nano Energy 2019, 62, 638.

[37]

W. Yang, X. Wang, P. Chen, Y. Hu, L. Li, Z. Sun, Nano Energy 2021, 85, 106037.

[38]

G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z. L. Wang, Nano Lett. 2013, 13, 847.

[39]

G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu, Z. L. Wang, Nano Lett. 2012, 12, 4960.

[40]

Y. Sun, Y. Zheng, R. Wang, T. Lei, J. Liu, J. Fan, W. Shou, Y. Liu, Nano Energy 2022, 100, 107506.

[41]

L. Yang, C. Liu, W. Yuan, C. Meng, A. Dutta, X. Chen, L. Guo, G. Niu, H. Cheng, Nano Energy 2022, 103, 107807.

[42]

R. Zhang, H. Olin, EcoMat 2020, 2, e12062.

[43]

J. Wang, G. Cai, S. Li, D. Gao, J. Xiong, P. S. Lee, Adv. Mater. 2018, 30, 1706157.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/