Dynamic Cation Intercalation Facilitating Chemical Oxidation of Water and Surface Stabilization During the Oxygen Evolution Reaction

Huiyan Zeng , Zhongfei Liu , Jun Qi , Jiajun Chen , Yanquan Zeng , Chengyan Yang , Zhenzhong Li , Chao Wang , Long Gu , Yan Zhang , Miao Shu , Chunzhen Yang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12813

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12813 DOI: 10.1002/eem2.12813
RESEARCH ARTICLE

Dynamic Cation Intercalation Facilitating Chemical Oxidation of Water and Surface Stabilization During the Oxygen Evolution Reaction

Author information +
History +
PDF

Abstract

A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction (OER). However, the chemical processes related to surface corrosion and catalyst degradation have not been well understood so far. In this study, we employ LiCoO2 as a model catalyst and observe distinct OER activities and surface stabilities in different alkaline solutions. Operando X-ray diffraction (XRD) and online mass spectroscopy (OMS) measurements prove the selective intercalation of alkali cations into the layered structure of LiCoO2 during OER. It is proposed that the dynamic cation intercalations facilitate the chemical oxidation process between highly oxidative Co species and adsorbed water molecules, triggering the so-called electrochemical-chemical reaction mechanism (EC-mechanism). The results of this study emphasize the influence of cations on OER and provide insights into new strategies for achieving both high activity and stability in high-performance OER catalysts.

Keywords

heterogeneous electrocatalysts / intercalation-stabilized interface / lithium cobalt oxide / oxygen evolution reaction / relationship of activity/stability

Cite this article

Download citation ▾
Huiyan Zeng, Zhongfei Liu, Jun Qi, Jiajun Chen, Yanquan Zeng, Chengyan Yang, Zhenzhong Li, Chao Wang, Long Gu, Yan Zhang, Miao Shu, Chunzhen Yang. Dynamic Cation Intercalation Facilitating Chemical Oxidation of Water and Surface Stabilization During the Oxygen Evolution Reaction. Energy & Environmental Materials, 2025, 8(2): e12813 DOI:10.1002/eem2.12813

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Hu, L. Zhang, J. Gong, Energy Environ. Sci. 2019, 12, 2620.

[2]

Y.-C. Zhang, C. Han, J. Gao, L. Pan, J. Wu, X.-D. Zhu, J.-J. Zou, ACS Catal. 2021, 11, 12485.

[3]

X. Xie, L. Du, L. Yan, S. Park, Y. Qiu, J. Sokolowski, W. Wang, Y. Shao, Adv. Funct. Mater. 2022, 32, 2110036.

[4]

X. Chen, J. Liu, T. Yuan, Z. Zhang, C. Song, S. Yang, X. Gao, N. Wang, L. Cui, Energy Mater. 2022, 2, 2.

[5]

X. Chen, Z. Zhang, Y. Chen, R. Xu, C. Song, T. Yuan, W. Tang, X. Gao, N. Wang, L. Cui, Energy Mater. 2023, 3, 300031.

[6]

J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 2017, 358, 751.

[7]

B. Han, K. A. Stoerzinger, V. Tileli, A. D. Gamalski, E. A. Stach, Y. Shao-Horn, Nat. Mater. 2016, 16, 121.

[8]

A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y. L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper, Y. Shao-Horn, Nat. Chem. 2017, 9, 457.

[9]

W. Zhu, F. Yao, K. Cheng, M. Zhao, C.-J. Yang, C.-L. Dong, Q. Hong, Q. Jiang, Z. Wang, H. Liang, J. Am. Chem. Soc. 2023, 145, 17995.

[10]

Y. Yan, C. Liu, H. Jian, X. Cheng, T. Hu, D. Wang, L. Shang, G. Chen, P. Schaaf, X. Wang, E. Kan, T. Zhang, Adv. Funct. Mater. 2020, 31, 31.

[11]

K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich, Y.-L. Lee, A. Grimaud, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 3264.

[12]

M. Risch, A. Grimaud, K. J. May, K. A. Stoerzinger, T. J. Chen, A. N. Mansour, Y. Shao-Horn, J. Phys. Chem. C 2013, 117, 8628.

[13]

E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.-J. Kim, J. Durst, F. Bozza, T. Graule, R. Schäublin, L. Wiles, M. Pertoso, N. Danilovic, K. E. Ayers, T. J. Schmidt, Nat. Mater. 2017, 16, 925.

[14]

J. Wang, Chem 2023, 9, 1645.

[15]

J.-W. Zhao, Z.-X. Shi, C.-F. Li, Q. Ren, G.-R. Li, ACS Mater. Lett. 2021, 3, 721.

[16]

L. Peng, N. Yang, Y. Yang, Q. Wang, X. Xie, D. Sun-Waterhouse, L. Shang, T. Zhang, G. I. N. Waterhouse, Angew. Chem. Int. Ed. 2021, 60, 24612.

[17]

R. Zhang, N. Dubouis, M. Ben Osman, W. Yin, M. T. Sougrati, D. A. D. Corte, D. Giaume, A. Grimaud, Angew. Chem. Int. Ed. 2019, 131, 4619.

[18]

S. W. Boettcher, Y. Surendranath, Nat. Catal. 2021, 4, 4.

[19]

J. Qi, X. Y. Zhong, H. Y. Zeng, C. Wang, Z. F. Liu, J. J. Chen, L. Gu, E. N. Hong, M. X. Li, J. Li, C. Z. Yang, Nano Res. 2023, 16, 9022.

[20]

C. Wu, X. Wang, Y. Tang, H. Zhong, X. Zhang, A. Zou, J. Zhu, C. Diao, S. Xi, J. Xue, J. Wu, Angew. Chem. Int. Ed. 2023, 62, e202218599.

[21]

H. N. Nong, L. J. Falling, A. Bergmann, M. Klingenhof, H. P. Tran, C. Spori, R. Mom, J. Timoshenko, G. Zichittella, A. Knop-Gericke, S. Piccinin, J. Perez-Ramirez, B. R. Cuenya, R. Schlogl, P. Strasser, D. Teschner, T. E. Jones, Nature 2020, 587, 408.

[22]

D. Y. Chung, P. P. Lopes, P. Farinazzo Bergamo Dias Martins, H. He, T. Kawaguchi, P. Zapol, H. You, D. Tripkovic, D. Strmcnik, Y. Zhu, S. Seifert, S. Lee, V. R. Stamenkovic, N. M. Markovic, Nat. Energy 2020, 5, 222.

[23]

Y. Wang, Y. Zhao, L. Liu, W. Qin, S. Liu, J. Tu, Y. Liu, Y. Qin, J. Liu, H. Wu, D. Zhang, A. Chu, B. Jia, X. Qu, M. Qin, J. Xue, J. Am. Chem. Soc. 2023, 145, 20261.

[24]

C. Yang, G. Rousse, K. Louise Svane, P. E. Pearce, A. M. Abakumov, M. Deschamps, G. Cibin, A. V. Chadwick, D. A. Dalla Corte, H. Anton Hansen, T. Vegge, J. M. Tarascon, A. Grimaud, Nat. Commun. 2020, 11, 1378.

[25]

H. Zhao, X. Lv, Y. G. Wang, Adv. Sci. 2023, 10, 2303677.

[26]

H. Jia, N. Yao, C. Yu, H. Cong, W. Luo, Angew. Chem. Int. Ed. 2023, 62, e202313886.

[27]

Y. Duan, N. Dubouis, J. Huang, D. A. Dalla Corte, V. Pimenta, Z. J. Xu, A. Grimaud, ACS Catal. 2020, 10, 4160.

[28]

A. C. Garcia, T. Touzalin, C. Nieuwland, N. Perini, M. T. M. Koper, Angew. Chem. Int. Ed. 2019, 58, 12999.

[29]

S. Hou, L. Xu, X. Ding, R. M. Kluge, T. K. Sarpey, R. W. Haid, B. Garlyyev, S. Mukherjee, J. Warnan, M. Koch, S. Zhang, W. Li, A. S. Bandarenka, R. A. Fischer, Angew. Chem. Int. Ed. 2022, 61, e202201610.

[30]

B. Huang, K. H. Myint, Y. Wang, Y. Zhang, R. R. Rao, J. Sun, S. Muy, Y. Katayama, J. Corchado Garcia, D. Fraggedakis, J. C. Grossman, M. Z. Bazant, K. Xu, A. P. Willard, Y. Shao-Horn, J. Phys. Chem. C 2021, 125, 4397.

[31]

J. Huang, M. Li, M. J. Eslamibidgoli, M. Eikerling, A. Groß, JACS Au 2021, 1, 1752.

[32]

C. Yang, O. Fontaine, J. M. Tarascon, A. Grimaud, Angew. Chem. Int. Ed. 2017, 56, 8652.

[33]

M. Görlin, J. H. Stenlid, S. Koroidov, H.-Y. Wang, M. Börner, M. Shipilin, A. Kalinko, V. Murzin, O. V. Safonova, M. Nachtegaal, A. Uheida, J. Dutta, M. Bauer, A. Nilsson, O. Diaz-Morales, Nat. Commun. 2020, 11, 6181.

[34]

Y. Kim, S. Kim, M. Shim, Y. Oh, K.-S. Lee, Y. Jung, H. R. Byon, J. Mater. Chem. A 2022, 10, 10967.

[35]

Z. Lu, H. Wang, D. Kong, K. Yan, P. C. Hsu, G. Zheng, H. Yao, Z. Liang, X. Sun, Y. Cui, Nat. Commun. 2014, 5, 4345.

[36]

Z. Lu, K. Jiang, G. Chen, H. Wang, Y. Cui, Adv. Mater. 2018, 30, e1800978.

[37]

B. Han, D. Qian, M. Risch, H. Chen, M. Chi, Y. S. Meng, Y. Shao-Horn, J. Phys. Chem. Lett. 2015, 6, 1357.

[38]

Z. Y. Lu, G. X. Chen, Y. B. Li, H. T. Wang, J. Xie, L. Liao, C. Liu, Y. Y. Liu, T. Wu, Y. Z. Li, A. C. Luntz, M. Bajdich, Y. Cui, J. Am. Chem. Soc. 2017, 139, 6270.

[39]

X. Xu, H. Sun, S. P. Jiang, Z. Shao, SusMat 2021, 1, 460.

[40]

W. T. Hong, K. A. Stoerzinger, Y.-L. Lee, L. Giordano, A. Grimaud, A. M. Johnson, J. Hwang, E. J. Crumlin, W. Yang, Y. Shao-Horn, Energy Environ. Sci. 2017, 10, 2190.

[41]

J. G. McAlpin, Y. Surendranath, M. Dincă, T. A. Stich, S. A. Stoian, W. H. Casey, D. G. Nocera, R. D. Britt, J. Am. Chem. Soc. 2010, 132, 6882.

[42]

T. Mizokawa, Y. Wakisaka, T. Sudayama, C. Iwai, K. Miyoshi, J. Takeuchi, H. Wadati, D. G. Hawthorn, T. Z. Regier, G. A. Sawatzky, Phys. Rev. Lett. 2013, 111, 056404.

[43]

N. Yao, G. Wang, H. Jia, J. Yin, H. Cong, S. Chen, W. Luo, Angew. Chem. Int. Ed. 2022, 134, e202117178.

[44]

Z. Xiao, Y. Wang, Y.-C. Huang, Z. Wei, C.-L. Dong, J. Ma, S. Shen, Y. Li, S. Wang, Energy Environ. Sci. 2017, 10, 2563.

[45]

M. Favaro, J. Yang, S. Nappini, E. Magnano, F. M. Toma, E. J. Crumlin, J. Yano, I. D. Sharp, J. Am. Chem. Soc. 2017, 139, 8960.

[46]

M. E. Kreider, M. Burke Stevens, ChemElectroChem 2022, 10, 10.

[47]

J. Suntivich, H. A. Gasteiger, N. Yabuuchi, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B1263.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

217

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/