Simultaneous Solar-Driven Interfacial Evaporation and Photo-Fenton Oxidation by Semiconducting Metal–Organic Framework From Waste Polyimide

Lijie Liu , Huajian Liu , Zifen Fan , Jie Liu , Xueying Wen , Huiyue Wang , Yan She , Guixin Hu , Ran Niu , Jiang Gong

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12812

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12812 DOI: 10.1002/eem2.12812
RESEARCH ARTICLE

Simultaneous Solar-Driven Interfacial Evaporation and Photo-Fenton Oxidation by Semiconducting Metal–Organic Framework From Waste Polyimide

Author information +
History +
PDF

Abstract

The integrated technology of interfacial solar steam generation and photo-Fenton oxidation has emerged as a promising way to simultaneously mitigate freshwater scarcity and degrade organic pollutants. However, fabricating low-cost, multi-functional evaporators with high water evaporation and catalytic ability still presents a significant challenge. Herein, we report the functional upcycling of waste polyimide into semiconducting Fe-BTEC and subsequently construct Fe-BTEC-based composite evaporators for simultaneous freshwater production and photo-Fenton degradation of pollutants. Firstly, through a two-step solvothermal-solution stirring method, Fe-BTEC nanoparticles with the size of 20–100 nm are massively produced from waste polyimide, with a band gap energy of 2.2 eV. The composite evaporator based on Fe-BTEC and graphene possesses wide solar-spectrum absorption capacity, high photothermal conversion capacity, rapid delivery of water, and low enthalpy of evaporation. Benefiting from the merits above, the composite evaporator achieves a high evaporation rate of 2.72 kg m-2 h-1 from tetracycline solution, as well as the photothermal conversion efficiency of 97% when exposed to irradiation of 1 Sun, superior to many evaporators. What is more, the evaporator exhibits the tetracycline degradation rate of 99.6% with good recycling stability, ranking as one of the most powerful heterogeneous Fenton catalysts. COMSOL Multiphysics and density functional theory calculation results prove the synergistic effect of the concentrated heat produced by interfacial solar steam generation and catalytic active sites of Fe-BTEC on promoting H2O2 activation to form reactive oxidation radicals. This work not only provides a green strategy for upcycling waste polyimide, but also proposes a new approach to fabricate multi-functional evaporators.

Keywords

freshwater production / interfacial solar steam generation / metal–organic framework / photo-Fenton oxidation / waste polyimide

Cite this article

Download citation ▾
Lijie Liu, Huajian Liu, Zifen Fan, Jie Liu, Xueying Wen, Huiyue Wang, Yan She, Guixin Hu, Ran Niu, Jiang Gong. Simultaneous Solar-Driven Interfacial Evaporation and Photo-Fenton Oxidation by Semiconducting Metal–Organic Framework From Waste Polyimide. Energy & Environmental Materials, 2025, 8(2): e12812 DOI:10.1002/eem2.12812

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Song, N. Xu, G. Liu, H. Qi, W. Zhao, B. Zhu, L. Zhou, J. Zhu, Nat. Nanotechnol. 2022, 17, 857.

[2]

G. Ni, S. H. Zandavi, S. M. Javid, S. V. Boriskina, T. A. Cooper, G. Chen, Energ. Environ. Sci. 2018, 11, 1510.

[3]

N. Myers, Nature 1993, 366, 419.

[4]

A. Azarafza, M. A. Islam, Y. Golpazirsorkheh, I. Efteghar, M. Sadrzadeh, M. Kamkar, A. F. Shojaei, M. Younas, T. M. Aminabhavi, M. Rezakazemi, Adv. Funct. Mater. 2023, 33, 2213326.

[5]

L. García-Rodríguez, A. I Palmero-Marrero, C. Gómez-Camacho, Desalination 2002, 142, 135.

[6]

S. E. Moore, S. D. Mirchandani, V. Karanikola, T. M. Nenoff, R. G. Arnold, A. Eduardo Sáez, Desalination 2018, 437, 108.

[7]

P. Lin, R. Yu, Y. Wang, T. Yang, Z. Li, J. Zhang, X. Yi, Z. Liu, X. Xu, Chem. Eng. J. 2023, 475, 145940.

[8]

F. Fu, Q. Wang, J. Environ. Manage. 2011, 92, 407.

[9]

L. Huang, Z. Hu, H. Jin, J. Wu, K. Liu, Z. Xu, J. Wan, H. Zhou, J. Duan, B. Hu, J. Zhou, Adv. Funct. Mater. 2020, 30, 1908486.

[10]

Z. Wang, T. Horseman, A. P. Straub, N. Y. Yip, D. Li, M. Elimelech, S. Lin, Sci. Adv. 2019, 5, eaax0763.

[11]

C.-C. Liu, R. Chen, Y. Wei, Y. Huang, Z. Zhang, Y. Zhao, T. Fu, C. Hu, X. Huang, X. Zang, Nano Energy 2023, 114, 108634.

[12]

L. Hao, N. Liu, H. Bai, P. He, R. Niu, J. Gong, J. Colloid Interface Sci. 2022, 608, 840.

[13]

N. Liu, L. Hao, B. Zhang, R. Niu, J. Gong, T. Tang, Energy Environ. Mater. 2022, 5, 617.

[14]

S. Li, D. Liu, Y. He, M. Li, X. Yang, Y. He, L. Zhou, H. Xie, H. Liu, ACS Sustain. Chem. Eng. 2022, 10, 7463.

[15]

R. Niu, Y. Ding, L. Hao, J. Ren, J. Gong, J. Qu, ACS Appl. Mater. Interfaces 2022, 14, 45533.

[16]

S. Cao, P. Rathi, X. Wu, D. Ghim, Y. S. Jun, S. Singamaneni, Adv. Mater. 2021, 33, 2000922.

[17]

X. Wang, X. Li, G. Liu, J. Li, X. Hu, N. Xu, W. Zhao, B. Zhu, J. Zhu, Angew. Chem. Int. Ed. 2019, 58, 12054.

[18]

R. Wang, J. Deng, P. Wu, Q. Ma, X. Dong, W. Yu, G. Liu, J. Wang, L. Liu, Energy Environ. Mater. 2023, 7, e12667.

[19]

C. Chen, Y. Kuang, L. Hu, Joule 2019, 3, 683.

[20]

Z. Fan, J. Ren, H. Bai, P. He, L. Hao, N. Liu, B. Chen, R. Niu, J. Gong, Chem. Eng. J. 2023, 451, 138534.

[21]

Y. Zhou, T. Ding, M. Gao, K. H. Chan, Y. Cheng, J. He, G. W. Ho, Nano Energy 2020, 77, 105102.

[22]

B. Shao, Y. Wang, X. Wu, Y. Lu, X. Yang, G. Y. Chen, G. Owens, H. Xu, J. Mater. Chem. A 2020, 8, 11665.

[23]

X. Wang, J. Zhang, H. Wang, M. Liang, Q. Wang, F. Chen, Energy Environ. Mater. 2023, 7, e12616.

[24]

Y. Cao, X. Lei, Q. Chen, C. Kang, W. Li, B. Liu, J. Photochem. Photobiol. A 2018, 364, 794.

[25]

H. Bai, P. He, L. Hao, Z. Fan, R. Niu, T. Tang, J. Gong, Chem. Eng. J. 2023, 456, 140994.

[26]

S. O. Ganiyu, E. D. van Hullebusch, M. Cretin, G. Esposito, M. A. Oturan, Sep. Purif. Technol. 2015, 156, 891.

[27]

W. Zheng, H. Guo, C. Zhu, C. Yue, W. Zhu, F. Liu, Z. Chen, Energy Environ. Mater. 2023, 6, e12476.

[28]

P. He, H. Lan, H. Bai, Y. Zhu, Z. Fan, J. Liu, L. Liu, R. Niu, Z. Dong, J. Gong, Appl. Catal. Environ. 2023, 337, 123001.

[29]

T. Wang, B. Tian, B. Han, D. Ma, M. Sun, A. Hanif, D. Xia, J. Shang, Energy Environ. Mater. 2022, 5, 711.

[30]

Z. Zhou, X. Liu, K. Sun, C. Lin, J. Ma, M. He, W. Ouyang, Chem. Eng. J. 2019, 372, 836.

[31]

N. Wang, L. He, X. Sun, X. Li, M. Li, J. Hazard. Mater. 2022, 427, 127941.

[32]

W. Cui, W. Yang, P. Chen, L. Chen, J. Li, Y. Sun, Y. Zhou, F. Dong, Energy Environ. Mater. 2022, 5, 928.

[33]

R. Changotra, H. Rajput, A. Dhir, J. Photochem. Photobiol. A 2019, 376, 175.

[34]

G. Chen, Y. Yu, L. Liang, X. Duan, R. Li, X. Lu, B. Yan, N. Li, S. Wang, J. Hazard. Mater. 2021, 408, 124461.

[35]

S. Dong, Y. Zhao, J. Yang, X. Liu, W. Li, L. Zhang, Y. Wu, J. Sun, J. Feng, Y. Zhu, Appl. Catal. Environ. 2021, 291, 120127.

[36]

S. Yan, H. Song, Y. Li, J. Yang, X. Jia, S. Wang, X. Yang, Appl. Catal. Environ. 2022, 301, 120820.

[37]

M. Gao, T. Zhang, G. W. Ho, Nano Res. 2022, 15, 9985.

[38]

D. Fan, Y. Lu, H. Zhang, H. Xu, C. Lu, Y. Tang, X. Yang, Appl. Catal. Environ. 2021, 295, 120285.

[39]

Y. Zhang, T. Xiong, D. K. Nandakumar, S. C. Tan, Adv. Sci. 2020, 7, 1903478.

[40]

M.-Q. Yang, C. F. Tan, W. Lu, K. Zeng, G. W. Ho, Adv. Funct. Mater. 2020, 30, 2004460.

[41]

F. Wang, Y. Huang, Z. Chai, M. Zeng, Q. Li, Y. Wang, D. Xu, Chem. Sci. 2016, 7, 6887.

[42]

B. Chen, L. Liu, Y. Song, H. Liu, Z. Gong, Y. She, J. Liu, R. Niu, J. Gong, Mater. Today Sustain. 2023, 24, 100561.

[43]

M. Gao, C. K. Peh, L. Zhu, G. Yilmaz, G. W. Ho, Adv. Energy Mater. 2020, 10, 2000925.

[44]

Y. Wang, J. Zhao, Z. Zhang, J. Xu, Z.-D. Gao, Y.-Y. Song, J. Environ. Chem. Eng. 2023, 11, 109800.

[45]

Q. Wu, H. Yang, L. Kang, Z. Gao, F. Ren, Appl. Catal. Environ. 2020, 263, 118282.

[46]

Y. Qian, F. Zhang, D. J. Kang, H. Pang, Energy Environ. Mater. 2023, 6, e12414.

[47]

M. Hao, M. Qiu, H. Yang, B. Hu, X. Wang, Sci. Total Environ. 2021, 760, 143333.

[48]

Z. Hu, Y. Wang, D. Zhao, Chem. Soc. Rev. 2021, 50, 4629.

[49]

S. Kwon, J. Kang, B. Lee, S. Hong, Y. Jeon, M. Bak, S.-K. Im, Energ. Environ. Sci. 2023, 16, 3074.

[50]

R. Wei, T. Tiso, J. Bertling, K. O’Connor, L. M. Blank, U. T. Bornscheuer, Nat. Catal. 2020, 3, 867.

[51]

W. Xu, Y. Su, M. Shang, X. Lu, Q. Lu, Chem. Eng. J. 2020, 397, 125361.

[52]

M. Zhang, L. Wang, H. Xu, Y. Song, X. He, Nano-Micro Lett. 2023, 15, 135.

[53]

X.-J. Liu, M.-S. Zheng, G. Chen, Z.-M. Dang, J.-W. Zha, Energ. Environ. Sci. 2022, 15, 56.

[54]

V.-T. Bui, N. D. Huynh, N. M. Chau, W. Kim, H. Kim, I.-K. Oh, D. P. Huynh, D. Choi, Nano Energy 2022, 101, 107612.

[55]

M. Rehan, A. Cho, I. Jeong, K. Kim, A. Ullah, J.-S. Cho, J. H. Park, Y. Jo, S. J. Hong, S. K. Ahn, S. Ahn, J. H. Yun, J. Gwak, D. Shin, Energy Environ. Mater. 2024, 7, e12604.

[56]

K. Zheng, Y. Wu, Z. Hu, S. Wang, X. Jiao, J. Zhu, Y. Sun, Y. Xie, Chem. Soc. Rev. 2023, 52, 8.

[57]

J. Huang, A. Veksha, W. P. Chan, A. Giannis, G. Lisak, Renew. Sustain. Energy Rev. 2022, 154, 111866.

[58]

O. Dogu, M. Pelucchi, R. Van de Vijver, P. H. M. Van Steenberge, D. R. D’Hooge, A. Cuoci, M. Mehl, A. Frassoldati, T. Faravelli, K. M. Van Geem, Prog. Energy Combust. Sci. 2021, 84, 100901.

[59]

H. Bai, N. Liu, L. Hao, P. He, C. Ma, R. Niu, J. Gong, T. Tang, Energy Environ. Mater. 2022, 5, 1204.

[60]

P. He, Z. Hu, Z. Dai, H. Bai, Z. Fan, R. Niu, J. Gong, Q. Zhao, T. Tang, ChemSusChem 2023, 16, e202201935.

[61]

K. Boukayouht, L. Bazzi, S. El Hankari, Coord. Chem. Rev. 2023, 478, 214986.

[62]

L. Ji, J. Wang, K. Wu, N. Yang, Adv. Funct. Mater. 2018, 28, 1706961.

[63]

C. Ji, M. Xu, H. Yu, L. Lv, W. Zhang, J. Hazard. Mater. 2022, 424, 127684.

[64]

F. M. Amombo Noa, M. Abrahamsson, E. Ahlberg, O. Cheung, C. R. Göb, C. J. McKenzie, L. Öhrström, Chem 2021, 7, 2491.

[65]

H. Chen, X. Liu, Q. He, S. Zhang, S. Xu, Y.-Z. Wang, Adv. Mater. 2024, 36, 2310779.

[66]

J. Wang, X. Yuan, S. Deng, X. Zeng, Z. Yu, S. Li, K. Li, Green Chem. 2020, 22, 6836.

[67]

T. Honma, T. Sato, J. Supercrit. Fluids 2020, 166, 105037.

[68]

Y. Wang, J. Li, X. Zhou, T. Wang, Q. Zhao, H. Zhang, Y. Wang, X. Hou, Compos. Sci. Technol. 2020, 199, 108342.

[69]

A. Allahbakhsh, Z. Jarrahi, G. Farzi, A. Shavandi, Chem. Eng. J. 2023, 467, 143472.

[70]

J. Yuan, X. Lei, C. Yi, H. Jiang, F. Liu, G. J. Cheng, Chem. Eng. J. 2022, 430, 132765.

[71]

X. Zhang, B. Ren, X. Li, B. Liu, S. Wang, P. Yu, Y. Xu, G. Jiang, J. Hazard. Mater. 2021, 418, 126333.

[72]

Y. Fan, W. Zhang, K. He, L. Wang, Q. Wang, J. Liu, Appl. Surf. Sci. 2022, 591, 153115.

[73]

J. Bao, H. Zhang, Y. Muhammad, H. Wei, R. Wang, G. Fang, Z. Zhao, Z. Zhao, Chem. Eng. J. 2023, 456, 141063.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/