Lithium Diffusion-Efficient Ionogels as Polymer Solid Electrolyte for Next-Gen Lithium-Ion Batteries

Boluwatife Igbaroola , Yassine Eddahani , Patrick Howlett , Maria Forsyth , Luke O’Dell , Nicolas Dupré , Jean Le Bideau

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12811

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12811 DOI: 10.1002/eem2.12811
RESEARCH ARTICLE

Lithium Diffusion-Efficient Ionogels as Polymer Solid Electrolyte for Next-Gen Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

The search for safer next-generation lithium-ion batteries (LIBs) has driven significant research on non-toxic, non-flammable solid electrolytes. However, their electrochemical performance often falls short. This work presents a simple, one-step photopolymerization process for synthesizing biphasic liquid–solid ionogel electrolytes using acrylic acid monomer and P111i4FSI ionic liquid. We investigated the impact of lithium salt concentration and temperature on ion diffusion, particularly lithium-ion (Li+) mobility, within these ionogels. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) revealed enhanced Li+ diffusion in the acrylic acid (AA)-based ionogels compared to their non-confined ionic liquid counterparts. Remarkably, Li+ diffusion remained favorable in the ionogels regardless of salt concentration. These AA-based ionogels demonstrate very good ionic conductivity (>1 mS cm-1 at room temperature) and a wide electrochemical window (up to 5.3 V vs Li+/Li0). These findings suggest significant promise for AA-based ionogels as polymer solid electrolytes in future solid-state battery applications.

Keywords

diffusion / ionic liquid electrolytes / ionogel / lithium-ion batteries / solid-state batteries

Cite this article

Download citation ▾
Boluwatife Igbaroola, Yassine Eddahani, Patrick Howlett, Maria Forsyth, Luke O’Dell, Nicolas Dupré, Jean Le Bideau. Lithium Diffusion-Efficient Ionogels as Polymer Solid Electrolyte for Next-Gen Lithium-Ion Batteries. Energy & Environmental Materials, 2025, 8(1): e12811 DOI:10.1002/eem2.12811

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Carbone, M. Gobet, J. Peng, M. Devany, B. Scrosati, S. Greenbaum, J. Hassoun, J. Power Sources 2015, 299, 460.

[2]

C. M. Costa, E. Lizundia, S. Lanceros-Méndez, Prog. Energy Combust. Sci. 2020, 79, 100846.

[3]

S. Yin, J. Liu, B. Cong, PRO 2023, 11, 2345.

[4]

Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, J. Power Sources 2012, 208, 210.

[5]

N. Chawla, N. Bharti, S. Singh, Batteries 2019, 5, 19.

[6]

F. Gebert, M. Longhini, F. Conti, A. J. Naylor, J. Power Sources 2023, 556, 232412.

[7]

N. Chen, H. Zhang, L. Li, R. Chen, S. Guo, Adv. Energy Mater. 2018, 8, 1702675.

[8]

Y. Hu, L. Yu, T. Meng, S. Zhou, X. Sui, X. Hu, Chem. Asian J. 2022, 17, e202200794.

[9]

A. Guyomard-Lack, P. E. Delannoy, N. Dupré, C. V. Cerclier, B. Humbert, J. Le Bideau, Phys. Chem. Chem. Phys. 2014, 16, 23639.

[10]

J. Le Bideau, J. B. Ducros, P. Soudan, D. Guyomard, Adv. Funct. Mater. 2011, 21, 4073.

[11]

G. M. A Girard, M. Hilder, H. Zhu, D. Nucciarone, K. Whitbread, S. Zavorine, M. Moser, M. Forsyth, D. R. Macfarlane, P. C. Howlett, Phys. Chem. Chem. Phys. 2015, 17, 8706.

[12]

M. Armand, J. M. Tarascon, Nature 2008, 451, 652.

[13]

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.

[14]

D. R. Macfarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A. Angell, Energy Environ. Sci. 2014, 7, 232.

[15]

P. E. Delannoy, B. Riou, B. Lestriez, D. Guyomard, T. Brousse, J. Le Bideau, J. Power Sources 2015, 274, 1085.

[16]

D. Aidoud, D. Guy-Bouyssou, D. Guyomard, J. Le Bideau, B. Lestriez, J. Electrochem. Soc. 2018, 165, A3179.

[17]

A. Guyomard-Lack, J. Abusleme, P. Soudan, B. Lestriez, D. Guyomard, J. Le Bideau, Adv. Energy Mater. 2014, 4, 1301570.

[18]

M. Brachet, T. Brousse, J. Le Bideau, ECS Electrochem. Lett. 2014, 3, A112.

[19]

A. Fdz De Anastro, N. Lago, C. Berlanga, M. Galcerán, M. Hilder, M. Forsyth, D. Mecerreyes, J. Memb. Sci. 2019, 582, 435.

[20]

A. Fdz De Anastro, N. Casado, X. Wang, J. Rehmen, D. Evans, D. Mecerreyes, M. Forsyth, C. Pozo-Gonzalo, Electrochim. Acta 2018, 278, 271.

[21]

D. Aidoud, A. Etiemble, D. Guy-Bouyssou, E. Maire, J. Le Bideau, D. Guyomard, B. Lestriez, J. Power Sources 2016, 330, 92.

[22]

K. Araño, D. Mazouzi, R. Kerr, B. Lestriez, J. Le Bideau, P. C. Howlett, N. Dupré, M. Forsyth, D. Guyomard, J. Electrochem. Soc. 2020, 167, 120520.

[23]

D. T. Rogstad, M.-A. Einarsrud, A. M. Svensson, J. Electrochem. Soc. 2021, 168, 110506.

[24]

N. Salem, S. Zavorine, D. Nucciarone, K. Whitbread, M. Moser, Y. Abu-Lebdeh, J. Electrochem. Soc. 2017, 164, H5202.

[25]

P. Parikh, M. Sina, A. Banerjee, X. Wang, M. S. D’Souza, J. M. Doux, E. A. Wu, O. Y. Trieu, Y. Gong, Q. Zhou, K. Snyder, Y. S. Meng, Chem. Mater. 2019, 31, 2535.

[26]

E. Andrzejewska, M. Podgorska-Golubska, I. Stepniak, M. Andrzejewski, Polymer (Guildf) 2009, 50, 2040.

[27]

M. Wang, P. Zhang, M. Shamsi, J. L. Thelen, W. Qian, V. K. Truong, J. Ma, J. Hu, M. D. Dickey, Nat. Mater. 2022, 21, 359.

[28]

M. J. Williamson, J. P. Southall, H. V. S. A. Hubbard, S. F. Johnston, G. R. Davies, I. M. Ward, Electrochim. Acta 1998, 43, 1415.

[29]

L. Porcarelli, J. L. Olmedo-Martínez, P. Sutton, V. Bocharova, A. Fdz De Anastro, M. Galceran, A. P. Sokolov, P. C. Howlett, M. Forsyth, D. Mecerreyes, Gels 2022, 8, 725.

[30]

N. Demarthe, L. A. O’Dell, B. Humbert, R. D. Arrua, D. Evans, T. Brousse, J. Le Bideau, Adv. Energy Mater. 2024, 14, 2304342.

[31]

F. U. Shah, O. I. Gnezdilov, R. Gusain, A. Filippov, Sci. Rep. 2017, 7, 16340.

[32]

T. Frömling, M. Kunze, M. Schönhoff, J. Sundermeyer, B. Roling, J. Phys. Chem. B 2008, 112, 12985.

[33]

M. Forsyth, G. M. A. Girard, A. Basile, M. Hilder, D. R. MacFarlane, F. Chen, P. C. Howlett, Electrochim. Acta 2016, 220, 609.

[34]

S. Bhattacharja, S. W. Smoot, D. H. Whitmore, Solid State Ionics 1986, 18-19, 306.

[35]

R. Kerr, D. Mazouzi, M. Eftekharnia, B. Lestriez, N. Dupré, M. Forsyth, D. Guyomard, P. C. Howlett, ACS Energy Lett. 2017, 2, 1804.

[36]

R. Murugan, V. Thangadurai, W. Weppner, ChemInform 2007, 38, 7778.

[37]

J. Kang, H. Chung, C. Doh, B. Kang, B. Han, J. Power Sources 2015, 293, 11.

[38]

A. Fdz De Anastro, L. Porcarelli, M. Hilder, C. Berlanga, M. Galceran, P. Howlett, M. Forsyth, D. Mecerreyes, ACS Appl. Energy Mater. 2019, 2, 6960.

[39]

C. R. Pope, M. Kar, D. R. MacFarlane, M. Armand, M. Forsyth, L. A. O’Dell, ChemPhysChem 2016, 17, 3187.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

238

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/