Advancing Scalability and Sustainability of Perovskite Light-Emitting Diodes Through the Microwave Synthesis of Nanocrystals

Thais Caroline Almeida da Silva , Rafael S. Sánchez , Jaume-Adrià Alberola-Borràs , Rosario Vidal , Iván Mora-Seró , Beatriz Julián-López

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12810

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12810 DOI: 10.1002/eem2.12810
RESEARCH ARTICLE

Advancing Scalability and Sustainability of Perovskite Light-Emitting Diodes Through the Microwave Synthesis of Nanocrystals

Author information +
History +
PDF

Abstract

In recent years, perovskite light-emitting diodes have witnessed a remarkable evolution in both efficiency and luminance levels. Nonetheless, the production of such devices typically relies on protracted synthesis procedures at elevated temperatures and vacuum/inert conditions (e.g. hot-injection synthesis), thus rendering them technically unsuitable for extensive display and/or lighting applications manufacturing. Although alternative synthetic protocols have been proposed, e.g. ligand-assisted reprecipitation, ultrasonic and microwave-based methods, their suitability for the construction of high-performing light-emitting diodes has been reported in only a few studies. In this study, we demonstrate the fabrication of highly efficient lighting devices based on CsPbBr3 colloidal perovskite nanocrystals synthesized by a fast, energetically efficient, and up-scalable microwave-assisted method. These nanocrystals exhibit an impressive photoluminescence quantum yield of 66.8% after purification, with a very narrow PL spectrum centered at 514 nm with a full width at half-maximum of 20 nm. Similarly, the PeLEDs achieve a maximum external quantum efficiency of 23.4%, a maximum current efficiency of 71.6 Cd A-1, and a maximum luminance level that exceeds 4.7 × 104 Cd m-2. Additionally, a significantly lower energy consumption for microwave-mediated synthesis compared with hot injection is demonstrated. These findings suggest that this synthetic procedure emerges as an outstanding and promising method towards a scalable and sustainable fabrication of high-quality perovskite light-emitting diodes.

Keywords

energy materials / light emitting materials / metal halide perovskites / semiconductors / sustainability

Cite this article

Download citation ▾
Thais Caroline Almeida da Silva, Rafael S. Sánchez, Jaume-Adrià Alberola-Borràs, Rosario Vidal, Iván Mora-Seró, Beatriz Julián-López. Advancing Scalability and Sustainability of Perovskite Light-Emitting Diodes Through the Microwave Synthesis of Nanocrystals. Energy & Environmental Materials, 2025, 8(1): e12810 DOI:10.1002/eem2.12810

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, M. V. Kovalenko, Nano Lett. 2016, 16, 5866.

[2]

J. Kang, L. W. Wang, J. Phys. Chem. Lett. 2017, 8, 489.

[3]

S. Ten Brinck, F. Zaccaria, I. Infante, ACS Energy Lett. 2019, 4, 2739.

[4]

H. Zhao, H. Chen, S. Bai, C. Kuang, X. Luo, P. Teng, C. Yin, P. Zeng, L. Hou, Y. Yang, L. Duan, F. Gao, M. Liu, ACS Energy Lett. 2021, 6, 2395.

[5]

X. Mei, D. Jia, J. Chen, S. Zheng, X. Zhang, Nano Today 2022, 43, 101449.

[6]

T. A. Wani, J. Shamsi, X. Bai, N. Arora, M. I. Dar, ACS Omega 2023, 8, 17337.

[7]

C. M Sutter-Fella, Y. Li, M. Amani, J. W. Ager, F. M. Toma, E. Yablonovitch, I. D. Sharp, A. Javey, Nano Lett. 2016, 16, 800.

[8]

F. Di Stasio, S. Christodoulou, N. Huo, G. Konstantatos, Chem. Mater. 2017, 29, 7663.

[9]

K. Chondroudis, D. B. Mitzi, Chem. Mater. 1999, 11, 3028.

[10]

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.

[11]

O. A Jaramillo-Quintero, R. S. Sanchez, M. Rincon, I. Mora-Sero, J. Phys. Chem. Lett. 2015, 6, 1883.

[12]

K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, Nature 2018, 562, 245.

[13]

L. Li, W. Zheng, Q. Wan, M. Liu, Q. Zhang, C. Zhang, R. Yan, X. Feng, L. Kong, J. Phys. Chem. C 2021, 125, 3110.

[14]

M. De Franco, M. Cirignano, T. Cavattoni, H. Bahmani Jalali, M. Prato, F. Di Stasio, Opt. Mater. X 2022, 13, 100124.

[15]

J. Zhang, T. Zhang, Z. Ma, F. Yuan, X. Zhou, H. Wang, Z. Liu, J. Qing, H. Chen, X. Li, S. Su, J. Xie, Z. Shi, L. Hou, C. Shan, Adv. Mater. 2023, 35, 2209002.

[16]

Q. Wan, W. Zheng, C. Zou, F. Carulli, C. Zhang, H. Song, M. Liu, Q. Zhang, L. Y. Lin, L. Kong, L. Li, S. Brovelli, ACS Energy Lett. 2023, 8, 927.

[17]

W. Yu, M. Wei, Z. Tang, H. Zou, L. Li, Y. Zou, S. Yang, Y. Wang, Y. Zhang, X. Li, H. Guo, C. Wu, B. Qu, Y. Gao, G. Lu, S. Wang, Z. Chen, Z. Liu, H. Zhou, B. Wei, Y. Liao, L. Zhang, Y. Li, Q. Gong, E. H. Sargent, L. Xiao, Adv. Mater. 2023, 35, 2301114.

[18]

S. A. Kulkarni, S. G. Mhaisalkar, N. Mathews, P. P. Boix, Small Methods 2019, 3, 1800231.

[19]

A. A. M Brown, B. Damodaran, L. Jiang, J. N. Tey, S. H. Pu, N. Mathews, S. G. Mhaisalkar, Adv. Energy Mater. 2020, 10, 2001349.

[20]

G. B. Nair, S. Tamboli, R. E. Kroon, S. J. Dhoble, H. C. Swart, J. Alloys Compd. 2022, 928, 167249.

[21]

A. Suhail, A. Saini, S. Beniwal, M. Bag, J. Phys. Chem. C 2023, 127, 17298.

[22]

H. T. Ramolahloane, G. B. Nair, H. C. Swart, Mater. Res. Bull. 2023, 165, 112285.

[23]

Y. Tang, P. Wang, R. Wang, H. Yuan, Y. Xin, X. Ren, Q. Chen, H. Yin, Appl. Surf. Sci. 2023, 616, 156442.

[24]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.

[25]

C. Li, Z. Zang, W. Chen, Z. Hu, X. Tang, W. Hu, K. Sun, X. Liu, W. Chen, Opt. Express 2016, 24, 15071.

[26]

D. Yan, S. Zhao, H. Wang, Z. Zang, Photonics Res. 2020, 8, 1086.

[27]

A. F. Gualdrón-Reyes, S. Masi, I. Mora-Seró, Trends Chem. 2021, 3, 499.

[28]

W. Yu, W. Tu, H. Liu, Langmuir 1999, 15, 6.

[29]

H. Pan, X. Xu, J. Liu, X. Li, H. Zhang, A. Huang, Z. Xiao, J. Alloys Compd. 2021, 886, 161248.

[30]

H. Liu, Z. Wu, H. Gao, J. Shao, H. Zou, D. Yao, Y. Liu, H. Zhang, B. Yang, ACS Appl. Mater. Interfaces 2017, 9, 42919.

[31]

Q. Pan, H. Hu, Y. Zou, M. Chen, L. Wu, D. Yang, X. Yuan, J. Fan, B. Sun, Q. Zhang, J. Mater. Chem. C Mater. 2017, 5, 10947.

[32]

Y. Li, H. Huang, Y. Xiong, S. V. Kershaw, A. L. Rogach, Angew. Chem. Int. Ed. 2018, 57, 5833.

[33]

K. Thesika, A. Vadivel Murugan, Inorg. Chem. 2020, 59, 6161.

[34]

T. C. A. da Silva, C. Fernández-Saiz, R. S. Sánchez, A. F. Gualdrón-Reyes, I. Mora-Seró, B. Julián-López, J. Solgel Sci. Technol. 2023.

[35]

V. K. Lamer, R. H. Dinegar, J. Am. Chem. Soc. 1950, 72, 4847.

[36]

C. Sun, Y. Jiang, L. Zhang, K. Wei, M. Yuan, ACS Nano 2023, 17, 17600.

[37]

N. Razgoniaeva, M. Yang, P. Garrett, N. Kholmicheva, P. Moroz, H. Eckard, L. Royo Romero, D. Porotnikov, D. Khon, M. Zamkov, Chem. Mater. 2018, 30, 1391.

[38]

X. M. Lin, C. M. Sorensen, K. J. Klabunde, J. Nanopart. Res. 2000, 2, 157.

[39]

M. Sakar, S. Balakumar, J. Photochem. Photobiol. A Chem. 2018, 356, 150.

[40]

Y. Yuan, J. Ni, J. Yin, J. Guan, X. Zhou, Y. Liu, Y. Ding, H. Cai, J. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 48861.

[41]

Y. Zhang, T. D. Siegler, C. J. Thomas, M. K. Abney, T. Shah, A. De Gorostiza, R. M. Greene, B. A. Korgel, Chem. Mater. 2020, 32, 5410.

[42]

J. A. Dias, S. H. Santagneli, S. J. L. Ribeiro, Y. Messaddeq, Sol. RRL 2021, 5, 2100205.

[43]

A. Dey, J. Ye, A. De, E. Debroye, S. K. Ha, E. Bladt, A. S. Kshirsagar, Z. Wang, J. Yin, Y. Wang, L. N. Quan, F. Yan, M. Gao, X. Li, J. Shamsi, T. Debnath, M. Cao, M. A. Scheel, S. Kumar, J. A. Steele, M. Gerhard, L. Chouhan, K. Xu, X. G. Wu, Y. Li, Y. Zhang, A. Dutta, C. Han, I. Vincon, A. L. Rogach, A. Nag, A. Samanta, B. A. Korgel, C. J. Shih, D. R. Gamelin, D. H. Son, H. Zeng, H. Zhong, H. Sun, H. V. Demir, I. G. Scheblykin, I. Mora-Seró, J. K. Stolarczyk, J. Z. Zhang, J. Feldmann, J. Hofkens, J. M. Luther, J. Pérez-Prieto, L. Li, L. Manna, M. I. Bodnarchuk, M. V. Kovalenko, M. B. J. Roeffaers, N. Pradhan, O. F. Mohammed, O. M. Bakr, P. Yang, P. Müller-Buschbaum, P. V. Kamat, Q. Bao, Q. Zhang, R. Krahne, R. E. Galian, S. D. Stranks, S. Bals, V. Biju, W. A. Tisdale, Y. Yan, R. L. Z. Hoye, L. Polavarapu, ACS Nano 2021, 15, 10775.

[44]

F. Haydous, J. M. Gardner, U. B. Cappel, J. Mater. Chem. A 2021, 9, 23419.

[45]

Y. Wang, F. Yang, X. Li, F. Ru, P. Liu, L. Wang, W. Ji, J. Xia, X. Meng, Adv. Funct. Mater. 2019, 29, 1904913.

[46]

H. M. Ghaithan, Z. A. Alahmed, S. M. H. Qaid, M. Hezam, A. S. Aldwayyan, ACS Omega 2020, 5, 7468.

[47]

R. S. Sánchez, A. Villanueva-Antolí, A. Bou, M. Ruiz-Murillo, I. Mora-Seró, J. Bisquert, Adv. Mater. 2023, 35, 2207993.

[48]

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, J. M. Hodgkiss, Chem. Mater. 2017, 29, 3644.

[49]

S. Mannar, P. Mandal, A. Roy, R. Viswanatha, J. Phys. Chem. Lett. 2022, 13, 6290.

[50]

J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska, R. García Cortadella, B. Nickel, C. Cardenas-Daw, J. K. Stolarczyk, A. S. Urban, J. Feldmann, Nano Lett. 2015, 15, 6521.

[51]

D. K. Sharma, S. Hirata, M. Vacha, Nat. Commun. 2019, 10, 4499.

[52]

H. Shi, X. Zhang, X. Sun, R. Chen, X. Zhang, J. Phys. Chem. C 2019, 123, 19844.

[53]

J. Chen, C. Zhang, X. Liu, L. Peng, J. Lin, X. Chen, Photonics Res. 2021, 9, 151.

[54]

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533.

[55]

M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stöferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Rainò, A. L. Efros, Nature 2018, 553, 189.

[56]

K. M. M Salim, E. Hassanabadi, S. Masi, A. F. Gualdrón-Reyes, M. Franckevicius, A. Devižis, V. Gulbinas, A. Fakharuddin, I. Mora-Seró, ACS Appl. Electron. Mater. 2020, 2, 2525.

[57]

M. Lu, J. Guo, P. Lu, L. Zhang, Y. Zhang, Q. Dai, Y. Hu, V. L. Colvin, W. W. Yu, J. Phys. Chem. C 2019, 123, 22787.

[58]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, C. Lee, Nano Lett. 2012, 12, 2362.

[59]

G. Vescio, G. Mathiazhagan, S. González-Torres, J. Sanchez-Diaz, A. Villaueva-Antolí, R. S. Sánchez, A. F. Gualdrón-Reyes, M. Oszajca, F. Linardi, A. Hauser, F. A Vinocour-Pacheco, W. Żuraw, S. Öz, S. Hernández, I. Mora-Seró, A. Cirera, B. Garrido, Adv. Eng. Mater. 2023, 25, 2300927.

[60]

L. Zhao, K. M. Lee, K. Roh, S. U. Z. Khan, B. P. Rand, Adv. Mater. 2019, 31, 1805836.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/