Advancing Scalability and Sustainability of Perovskite Light-Emitting Diodes Through the Microwave Synthesis of Nanocrystals
Thais Caroline Almeida da Silva , Rafael S. Sánchez , Jaume-Adrià Alberola-Borràs , Rosario Vidal , Iván Mora-Seró , Beatriz Julián-López
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12810
Advancing Scalability and Sustainability of Perovskite Light-Emitting Diodes Through the Microwave Synthesis of Nanocrystals
In recent years, perovskite light-emitting diodes have witnessed a remarkable evolution in both efficiency and luminance levels. Nonetheless, the production of such devices typically relies on protracted synthesis procedures at elevated temperatures and vacuum/inert conditions (e.g. hot-injection synthesis), thus rendering them technically unsuitable for extensive display and/or lighting applications manufacturing. Although alternative synthetic protocols have been proposed, e.g. ligand-assisted reprecipitation, ultrasonic and microwave-based methods, their suitability for the construction of high-performing light-emitting diodes has been reported in only a few studies. In this study, we demonstrate the fabrication of highly efficient lighting devices based on CsPbBr3 colloidal perovskite nanocrystals synthesized by a fast, energetically efficient, and up-scalable microwave-assisted method. These nanocrystals exhibit an impressive photoluminescence quantum yield of 66.8% after purification, with a very narrow PL spectrum centered at 514 nm with a full width at half-maximum of 20 nm. Similarly, the PeLEDs achieve a maximum external quantum efficiency of 23.4%, a maximum current efficiency of 71.6 Cd A-1, and a maximum luminance level that exceeds 4.7 × 104 Cd m-2. Additionally, a significantly lower energy consumption for microwave-mediated synthesis compared with hot injection is demonstrated. These findings suggest that this synthetic procedure emerges as an outstanding and promising method towards a scalable and sustainable fabrication of high-quality perovskite light-emitting diodes.
energy materials / light emitting materials / metal halide perovskites / semiconductors / sustainability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |