Harnessing the Power of PM6:Y6 Semitransparent Photoanodes by Computational Balancement of Photon Absorption in Photoanode/Photovoltaic Organic Tandems: >7 mA cm-2 Solar Synthetic Fuels Production at Bias-Free Potentials

Francisco Bernal-Texca , Emmanouela Andrioti , Jordi Martorell , Carles Ros

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12809

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12809 DOI: 10.1002/eem2.12809
RESEARCH ARTICLE

Harnessing the Power of PM6:Y6 Semitransparent Photoanodes by Computational Balancement of Photon Absorption in Photoanode/Photovoltaic Organic Tandems: >7 mA cm-2 Solar Synthetic Fuels Production at Bias-Free Potentials

Author information +
History +
PDF

Abstract

This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules: insufficient photogenerated current. Various organic blends, including PTB7-Th:FOIC, PTB7-Th:O6T-4F, PM6:Y6, and PM6:FM, were systematically tested. When coupled with electron transport layer (ETL) contacts, these blends exhibit exceptional charge separation and extraction, with PM6:Y6 achieving saturation photocurrents up to 16.8 mA cm-2 at 1.23 VRHE (oxygen evolution thermodynamic potential). For the first time, a tandem structure utilizing organic photoanodes has been computationally designed and fabricated and the implementation of a double PM6:Y6 photoanode/photovoltaic structure resulted in photogenerated currents exceeding 7 mA cm-2 at 0 VRHE (hydrogen evolution thermodynamic potential) and anodic current onset potentials as low as -0.5 VRHE. The herein-presented organic-based approach paves the way for further exploration of different blend combinations to target specific oxidative reactions by selecting precise donor/acceptor candidates among the multiple existing ones.

Keywords

computational / hydrogen / organic / photoanodes / photovoltaics / tandem

Cite this article

Download citation ▾
Francisco Bernal-Texca, Emmanouela Andrioti, Jordi Martorell, Carles Ros. Harnessing the Power of PM6:Y6 Semitransparent Photoanodes by Computational Balancement of Photon Absorption in Photoanode/Photovoltaic Organic Tandems: >7 mA cm-2 Solar Synthetic Fuels Production at Bias-Free Potentials. Energy & Environmental Materials, 2025, 8(1): e12809 DOI:10.1002/eem2.12809

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Ros, T. Andreu, J. R. Morante, J. Mater. Chem. A Mater. 2020, 8, 10625.

[2]

X. Shi, H. Jeong, S. J. Oh, M. Ma, K. Zhang, J. Kwon, I. T. Choi, I. Y. Choi, H. K. Kim, J. K. Kim, J. H. Park, Nat. Commun. 2016, 7, 11943.

[3]

C. G. Ferreira, C. Sansierra, F. Bernal-Texca, M. Zhang, C. Ros, J. Martorell, Energy Environ. Mater. 2024, 7, e12679.

[4]

Q. Shi, S. Murcia-López, P. Tang, C. Flox, J. R. Morante, Z. Bian, H. Wang, T. Andreu, ACS Catal. 2018, 8, 3331.

[5]

V. F. Kunzelmann, C. M. Jiang, I. Ihrke, E. Sirotti, T. Rieth, A. Henning, J. Eichhorn, I. D. Sharp, J. Mater. Chem. A Mater. 2022, 10, 12026.

[6]

L. Geronimo, C. Ferreira, V. Gacha, D. Raptis, J. Martorell, C. Ros, ACS Appl. Energy Mater. 2024, 7, 1792.

[7]

C. Fàbrega, S. Murcia-López, D. Monllor-Satoca, J. D. Prades, M. D. Hernández-Alonso, G. Penelas, J. R. Morante, T. Andreu, Appl Catal B 2016, 189, 133.

[8]

A. Fujishima, K. Honda, Nature 1972, 238, 37.

[9]

C. Ros, C. Fabrega, D. Monllor-Satoca, M. D. Hernández-Alonso, G. Penelas-Pérez, J. R. Morante, T. Andreu, J. Phys. Chem. C 2018, 122, 3295.

[10]

M. Cao, K. Yao, C. Wu, J. Huang, W. Yang, L. Zhang, F. Lei, Y. Sun, L. Wang, Y. Shen, ACS Appl. Energy Mater. 2018, 1, 6497.

[11]

K. Sivula, ChemCatChem 2014, 6, 2796.

[12]

C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, J. R. Morante, ACS Appl. Mater. Interfaces 2017, 9, 17932.

[13]

C. Ros, T. Andreu, J. David, J. Arbiol, J. R. Morante, J. Mater. Chem. A Mater. 2019, 7, 21892.

[14]

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005.

[15]

F. Yang, A. C. Nielander, R. L. Grimm, N. S. Lewis, J. Phys. Chem. C 2016, 120, 6989.

[16]

C. Ros, T. Andreu, S. Giraldo, Y. Sánchez, J. R. Morante, Sol. Energy Mater. Sol. Cells 2016, 158, 184.

[17]

C. Ros, T. Andreu, S. Giraldo, V. Izquierdo-Roca, E. Saucedo, J. R. Morante, ACS Appl. Mater. Interfaces 2018, 10, 13425.

[18]

L. Rovelli, S. D. Tilley, K. Sivula, ACS Appl. Mater. Interfaces 2013, 5, 8018.

[19]

P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, Science 2019, 364, eaav3506.

[20]

T. J. Jacobsson, Energ. Environ. Sci. 2018, 11, 1977.

[21]

J. Fu, P. W. K. Fong, H. Liu, C. S. Huang, X. Lu, S. Lu, M. Abdelsamie, T. Kodalle, C. M Sutter-Fella, Y. Yang, G. Li, Nat. Commun. 2023, 14, 1760.

[22]

C. T. Lin, C. T. Hsieh, T. J. Macdonald, J. F. Chang, P. C. Lin, H. Cha, L. Steier, A. Wadsworth, I. McCulloch, C. C. Chueh, J. R. Durrant, Adv. Funct. Mater. 2022, 32(40), 1.

[23]

C. Xie, X. Zeng, C. Li, X. Sun, S. Liang, H. Huang, B. Deng, X. Wen, G. Zhang, P. You, C. Yang, Y. Han, S. Li, G. Lu, H. Hu, N. Li, Y. Chen, Energ. Environ. Sci. 2024, 17, 2441.

[24]

T. H. Lee, R. R. Rao, R. A. Pacalaj, A. A. Wilson, J. R. Durrant, Adv. Energy Mater. 2022, 12, 2103698.

[25]

Z. C. Wen, H. Yin, X. T. Hao, Surfaces Interfaces 2021, 23, 100921.

[26]

Q. Guo, Q. Guo, Y. Geng, A. Tang, M. Zhang, M. Du, X. Sun, E. Zhou, Mater. Chem. Front. 2021, 5, 3257.

[27]

L. Perdigón-Toro, H. Zhang, A. Markina, J. Yuan, S. M. Hosseini, C. M. Wolff, G. Zuo, M. Stolterfoht, Y. Zou, F. Gao, D. Andrienko, S. Shoaee, D. Neher, Adv. Mater. 2020, 32, e1906763.

[28]

Q. Liu, L. G. Gerling, F. Bernal-Texca, J. Toudert, T. Li, X. Zhan, J. Martorell, Adv. Energy Mater. 2020, 10(17), 1.

[29]

L. Bolzonello, F. Bernal-Texca, L. G. Gerling, J. Ockova, E. Collini, J. Martorell, N. F. Van Hulst, J. Phys. Chem. Lett. 2021, 12, 3983.

[30]

J. M. Yu, J.-W. Jang, Catalysts 2023, 13, 814.

[31]

H. H. Cho, L. Yao, J. H. Yum, Y. Liu, F. Boudoire, R. A. Wells, N. Guijarro, A. Sekar, K. Sivula, Nat. Catal. 2021, 4, 431.

[32]

A. Sekar, J. M Moreno-Naranjo, Y. Liu, J.-H. Yum, B. P. Darwich, H.-H. Cho, N. Guijarro, L. Yao, K. Sivula, ACS Appl. Mater. Interfaces 2022, 14, 8191.

[33]

T. N. Das, R. E. Huie, P. Neta, J. Phys. Chem. A 1999, 103, 3581.

[34]

T. H. Lee, S. A. J. Hillman, S. Gonzalez-Carrero, A. Difilippo, J. R. Durrant, Adv. Energy Mater. 2023, 13, 2300400.

[35]

L. Yao, A. Rahmanudin, N. Guijarro, K. Sivula, Adv. Energy Mater. 2018, 8(32), 1.

[36]

F. Bernal-Texca, J. Martorell, Sol. RRL 2024, 8, 2300728.

[37]

Z. Wu, H. Yin, G. Li, Z. Ji, Org. Electron. 2024, 129, 107060.

[38]

X. Ma, Z. Xiao, Q. An, M. Zhang, Z. Hu, J. Wang, L. Ding, F. Zhang, J. Mater. Chem. A Mater. 2018, 6, 21485.

[39]

A. Alfano, A. Mezzetti, F. Fumagalli, C. Tao, E. Rovera, A. Petrozza, F. Di Fonzo, IScience 2021, 24, 102463.

[40]

Y. H. Lai, D. W. Palm, E. Reisner, Adv. Energy Mater. 2015, 5(24), 1.

[41]

J. Brillet, M. Comuz, F. Le Formal, J. H. Yum, M. Grätzel, K. Sivula, J. Mater. Res. 2010, 25, 17.

[42]

G. Martínez-Denegri, C. G. Ferreira, M. A Ruiz-Preciado, P. Fassl, M. Kramarenko, U. W. Paetzold, J. Martorell, Adv. Energy Mater. 2022, 12, 2201473.

[43]

X. Elias, Q. Liu, C. Gimbert-Suriñach, R. Matheu, P. Mantilla-Perez, A. Martinez-Otero, X. Sala, J. Martorell, A. Llobet, ACS Catal. 2016, 6, 3310.

[44]

I. Gelmetti, N. F. Montcada, A. Pérez-Rodríguez, E. Barrena, C. Ocal, I. García-Benito, A. Molina-Ontoria, N. Martín, A. Vidal-Ferran, E. Palomares, Energ. Environ. Sci. 2019, 12, 1309.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/