Quenched PVDF/PMMA Porous Matrix for Triboelectric Energy Harvesting and Sensing

Assem Mubarak , Bayandy Sarsembayev , Yerzhigit Serik , Abdirakhman Onabek , Zhanat Kappassov , Zhumabay Bakenov , Kazuyoshi Tsuchiya , Gulnur Kalimuldina

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12808

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12808 DOI: 10.1002/eem2.12808
RESEARCH ARTICLE

Quenched PVDF/PMMA Porous Matrix for Triboelectric Energy Harvesting and Sensing

Author information +
History +
PDF

Abstract

The rapid development of nanotechnology has significantly revolutionized wearable electronics and expanded their functionality. Through introducing innovative solutions for energy harvesting and autonomous sensing, this research presents a cost-effective strategy to enhance the performance of triboelectric nanogenerators (TENGs). The TENG was fabricated from polyvinylidene fluoride (PVDF) and N, N’-poly(methyl methacrylate) (PMMA) blend with a porous structure via a novel optimized quenching method. The developed approach results in a high β-phase content (85.7%) PVDF/3wt.%PMMA porous blend, known for its superior piezoelectric properties. PVDF/3wt.%PMMA modified porous TENG demonstrates remarkable electrical output, with a dielectric constant of 40 and an open-circuit voltage of approximately 600 V. The porous matrix notably increases durability, enduring over 36 000 operational cycles without performance degradation. Moreover, practical applications were explored in this research, including powering LEDs and pacemakers with a maximum power output of 750 mW m-2. Also, TENG served as a self-powered tactile sensor for robotic applications in various temperature conditions. The work highlights the potential of the PVDF/PMMA porous blend to utilize the next-generation self-powered sensors and power small electronic devices.

Keywords

N,N’-poly(methyl methacrylate) (PMMA) / robotic tactile sensors / polyvinylidene fluoride (PVDF) / quenching / triboelectric nanogenerators (TENGs)

Cite this article

Download citation ▾
Assem Mubarak, Bayandy Sarsembayev, Yerzhigit Serik, Abdirakhman Onabek, Zhanat Kappassov, Zhumabay Bakenov, Kazuyoshi Tsuchiya, Gulnur Kalimuldina. Quenched PVDF/PMMA Porous Matrix for Triboelectric Energy Harvesting and Sensing. Energy & Environmental Materials, 2025, 8(1): e12808 DOI:10.1002/eem2.12808

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Hajra, S. Panda, H. Khanberh, V. Vivekananthan, E. Chamanehpour, Y. K. Mishra, H. J. Kim, Nano Energy 2023, 115, 108729.

[2]

N. Turdakyn, A. Medeubayev, I. Abay, D. Adair, G. Kalimuldina, Materials Today: Proceedings, Elsevier Ltd, Amsterdam, Netherlands 2021, pp. 2478-81.

[3]

Y. Nurmakanov, G. Kalimuldina, G. Nauryzbayev, D. Adair, Z. Bakenov, Nanoscale Res. Lett. 2021, 16, 122.

[4]

N. K. Das, M. Ravipati, S. Badhulika, Adv. Funct. Mater. 2023, 33, 2303288.

[5]

K. Dong, X. Peng, Z. L. Wang, Advanced Materials 2020, 32, e1902549.

[6]

K. X. Hou, X. Dai, S. P. Zhao, L. B. Huang, C. H. Li, Nano Energy 2023, 116, 108739.

[7]

Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z. L. Wang, Adv. Mater. 2014, 26, 5851.

[8]

S. Ye, M. Yan, X. Tan, J. Liang, G. Zeng, H. Wu, B. Song, C. Zhou, Y. Yang, H. Wang, Appl Catal B 2019, 250, 78.

[9]

B. Fatma, S. Gupta, C. Chatterjee, R. Bhunia, V. Verma, A. Garg, J. Mater. Chem. A Mater. 2020, 8, 15023.

[10]

M. M. Rastegardoost, O. A. Tafreshi, Z. Saadatnia, S. Ghaffari-Mosanenzadeh, C. B. Park, H. E. Naguib, Nano Energy 2023, 111, 108365.

[11]

P. Jiao, Nano Energy 2021, 88, 106227.

[12]

P. Martins, A. C. Lopes, S. Lanceros-Mendez, Progress in Polymer Science 2014, 39, 683.

[13]

G. Kalimuldina, N. Turdakyn, I. Abay, A. Medeubayev, A. Nurpeissova, D. Adair, Z. Bakenov, Sensors 2020, 20(18), 1.

[14]

K. Xia, Z. Zhu, H. Zhang, Z. Xu, Appl. Phys. A Mater. Sci. Process. 2018, 124, 520.

[15]

C. Ribeiro, C. M. Costa, D. M. Correia, J. Nunes-Pereira, J. Oliveira, P. Martins, R. Gonçalves, V. F. Cardoso, S. Lanceros-Méndez, Nat. Protoc. 2018, 13, 681.

[16]

M. Jain, Z. Mutlu, J. Mao, J. Zhou, C. Wu, Y. Cao, M. Cakmak, J. Polym. Sci. 2023, 61, 1132.

[17]

N. Turdakyn, Z. Bekezhankyzy, S. Araby, R. Montazami, Z. Bakenov, G. Kalimuldina, Energy Rep. 2023, 10, 628.

[18]

A. Ferri, S. Barrau, R. Bourez, A. Da Costa, M. H. Chambrier, A. Marin, J. Defebvin, J. M. Lefebvre, R. Desfeux, Compos. Sci. Technol. 2020, 186, 107914.

[19]

J. Xia, Z. Zheng, Y. Guo, Compos. Part A Appl. Sci. Manuf. 2022, 157, 157.

[20]

M. Fortunato, D. Cavallini, G. De Bellis, F. Marra, A. Tamburrano, F. Sarto, M. S. Sarto, Polymers 2019, 11, 1096.

[21]

Y. Oka, N. Koizumi, Bull. Inst. Chem. Res. Kyoto Univ. 1985, 63, 192.

[22]

S. J. Kang, Y. J. Park, I. Bae, K. J. Kim, H. C. Kim, S. Bauer, E. L. Thomas, C. Park, Adv. Funct. Mater. 2009, 19, 2812.

[23]

T. Nishiyama, T. Sumihara, E. Sato, H. Horibe, Polym. J. 2017, 49, 319.

[24]

V. Tiwari, G. Srivastava, G. , J. Polym. Res. 2014, 21(587), 1.

[25]

S. Yu, Y. Zhang, Z. Yu, J. Zheng, Y. Wang, H. Zhou, Nano Energy 2021, 80, 105519.

[26]

A. De Neef, C. Samuel, G. Stoclet, M. Rguiti, C. Courtois, P. Dubois, J. Soulestin, J. M. Raquez, Soft Matter 2018, 14, 4591.

[27]

A. De Neef, C. Samuel, H. Amorín, G. Stoclet, R. Jiménez, P. Dubois, J. Soulestin, J. M. Raquez, ACS Appl. Polym. Mater. 2021, 2, 3766.

[28]

D. M. Esterly, D. Leo, D. Inman, Manufacturing of Poly(Vinylidene Fluoride) and Evaluation of its Mechanical Properties, Virginia Tech, Blacksburg, Virginia 2002.

[29]

Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu, Y. Lei, C. B. Park, ACS Appl. Mater. Interfaces 2020, 12, 36568.

[30]

C. Zhang, X. Tong, Z. Liu, Y. Zhang, T. Zhang, C. Tang, X. Liu, Q. Chi, Polymers (Basel) 2023, 15, 2486.

[31]

S. Ojha, P. Maity, S. Bera, S. Kumar Si, B. Bhusan Khatua, Energ. Technol. 2023, 11, 2201086.

[32]

C. Mi, Z. Ren, H. Li, S. Yan, X. Sun, Ind. Eng. Chem. Res. 2019, 58, 7389.

[33]

S. Aid, A. Eddhahak, S. Khelladi, Z. Ortega, S. Chaabani, A. Tcharkhtchi, Polym. Test. 2019, 73, 222.

[34]

Y. Zhang, T. Zhang, Z. Huang, J. Yang, Advanced Science 2022, 9, 2105084.

[35]

X. Wang, H. Zhang, L. Dong, X. Han, W. Du, J. Zhai, C. Pan, Z. L. Wang, Adv. Mater. 2016, 28, 2896.

[36]

S. Wang, X. Zhao, X. Yin, J. Yu, B. Ding, ACS Appl. Mater. Interfaces 2016, 8, 23985.

[37]

L. Shi, H. Jin, S. Dong, S. Huang, H. Kuang, H. Xu, J. Chen, W. Xuan, S. Zhang, S. Li, X. Wang, J. Luo, Nano Energy 2021, 80, 105599.

[38]

H. Asai, Y. Terada, K. Nakane, Polymer (Guildf) 2022, 244, 124650.

[39]

D. Lolla, M. Lolla, A. Abutaleb, H. U. Shin, D. H. Reneker, G. G. Chase, Materials 2016, 9, 671.

[40]

L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators, Vol. 78, Elsevier Ltd, Amsterdam, Netherlands 2020, 105251.

[41]

Y. H. Lee, D. H. Kim, Y. Kim, I. Shabbir, M. Li, K. H. Yoo, T. W. Kim, Nano Energy 2022, 102, 107676.

[42]

J. H. Zhang, Z. Zhou, J. Li, B. Shen, T. Zhu, X. Gao, R. Tao, X. Guo, X. Hu, Y. Shi, L. Pan, ACS Mater. Lett. 2022, 4, 847.

[43]

M. M. Rastegardoost, O. A. Tafreshi, Z. Saadatnia, S. Ghaffari-Mosanenzadeh, C. B. Park, H. E. Naguib, Appl. Mater. Today 2023, 30, 101732.

[44]

P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 5807.

[45]

Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, Z. L. Wang, ACS Nano 2013, 7, 9213.

[46]

Z. Zhao, Q. Huang, C. Yan, Y. Liu, X. Zeng, X. Wei, Y. Hu, Z. Zheng, Nano Energy 2020, 70, 104528.

[47]

R. Song, G. Xia, X. Xing, L. He, Q. Zhao, Z. Ma, J. Colloid Interface Sci. 2013, 401, 50.

[48]

J. Wang, H. Wu, Z. Wang, W. He, C. Shan, S. Fu, Y. Du, H. Liu, C. Hu, Adv. Funct. Mater. 2022, 32, 2203884.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/