Self-Powered Nanostructured Piezoelectric Filaments as Advanced Transducers for New Cochlear Implants

Fatemeh Mokhtari , Serena Danti , Bahareh Azimi , Filippo Hellies , Elisabetta Zanoletti , Giovanna Albertin , Laura Astolfi , Russell J. Varley , Joselito M. Razal

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12807

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12807 DOI: 10.1002/eem2.12807
RESEARCH ARTICLE

Self-Powered Nanostructured Piezoelectric Filaments as Advanced Transducers for New Cochlear Implants

Author information +
History +
PDF

Abstract

The conversion of sound vibration into electrical potential is a critical function performed by cochlear hair cells. Unlike the regenerative capacity found in various other cells throughout the body, cochlear sensory cells lack the ability to regenerate once damaged. Furthermore, a decline in the quantity of these cells results in a deterioration of auditory function. Piezoelectric materials can generate electric charge in response to sound wave vibration, making them theoretically suitable for replacing hair cell function. This study explores an innovative approach using piezoelectric nanocomposite filaments, namely poly(vinylidene fluoride), poly(vinylidene fluoride)/barium titanate, and poly(vinylidene fluoride)/reduced graphene oxide, as self-powered acoustic sensors designed to function in place of cochlear hair cells. These flexible filaments demonstrate a unique ability to generate electricity in response to frequency sounds from 50 up to 1000 Hz at moderate sound pressure levels (60–95 dB), approaching the audible range with an overall acoustoelectric energy conversion efficiency of 3.25%. Serving as self-powered acoustic sensors, these flexible filaments hold promise for potential applications in cochlear implants, with a high sensitivity of 117.5 mV (Pa·cm2)-1. The cytocompatibility of these filaments was assessed through in vitro viability tests conducted on three cell lines, serving as a model for inner ear cells.

Keywords

acoustic sensor / cochlea / inner ear sensory cell / piezoelectric nanocomposite filament

Cite this article

Download citation ▾
Fatemeh Mokhtari, Serena Danti, Bahareh Azimi, Filippo Hellies, Elisabetta Zanoletti, Giovanna Albertin, Laura Astolfi, Russell J. Varley, Joselito M. Razal. Self-Powered Nanostructured Piezoelectric Filaments as Advanced Transducers for New Cochlear Implants. Energy & Environmental Materials, 2025, 8(1): e12807 DOI:10.1002/eem2.12807

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Chadha, K. Kamenov, A. Cieza, Bull. World Health Organ. 2021, 99, 242.

[2]

N. Michalski, C. Petit, Hum. Genet. 2022, 141, 335.

[3]

E. Simoni, G. Orsini, M. Chicca, S. Bettini, V. Franceschini, A. Martini, L. Astolfi, Cytotherapy 2017, 19, 909.

[4]

P. Zhou, Z. Yao, J. Ma, Z. Zhu, Chaos Solit. Fractals 2021, 145, 110751.

[5]

S. Danti, B. Azimi, M. Candito, A. Fusco, M. S. Sorayani Bafqi, C. Ricci, M. Milazzo, C. Cristallini, M. Latifi, G. Donnarumma, L. Bruschini, A. Lazzeri, L. Astolfi, S. Berrettini, Biointerphases 2020, 15, 031004.

[6]

R. Sarpeshkar, R. F. Lyon, C. Mead, Analog Integr. Circuits Signal Process. 1998, 16, 245.

[7]

T. Tsuji, A. Nakayama, H. Yamazaki, S. Kawano, Micromachines 2018, 9, 273.

[8]

Y. H. Jung, B. Park, J. U. Kim, T. I. Kim, Adv. Mater. 2019, 31, 1803637.

[9]

A. Ciorba, L. Astolfi, A. Martini, Audiol.Med. 2008, 6, 170.

[10]

S. Ghiselli, S. Nedic, S. Montino, L. Astolfi, R. Bovo, Acta Otorhinolaryngol. Ital. 2016, 36, 513.

[11]

B. Azimi, M. Milazzo, S. Danti, Front. Bioeng. Biotechnol. 2021, 9, 669863.

[12]

M. K. Cosetti, S. B. Waltzman, Expert Rev. Med. Devices 2011, 8, 389.

[13]

S. Danti, S. Berrettini, Front. Mater. 2024, 11, 1362141.

[14]

H. S. Wang, S. K. Hong, J. H. Han, Y. H. Jung, H. K. Jeong, T. H. Im, C. K. Jeong, B.-Y. Lee, G. Kim, C. D. Yoo, Sci. Adv. 2021, 7, eabe5683.

[15]

Y. J. Hwang, S. Choi, H. S. Kim, Sens. Actuators A Phys. 2019, 300, 111672.

[16]

K. Roy, S. Jana, Z. Mallick, S. K. Ghosh, B. Dutta, S. Sarkar, C. Sinha, D. Mandal, Langmuir 2021, 37, 7107.

[17]

B. L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs, S. Menegatti, M. A. Daniele, Adv. Healthc. Mater. 2021, 10, 2100986.

[18]

H. Ahmadi, H. Moradi, C. J. Pastras, S. Abolpour Moshizi, S. Wu, M. Asadnia, ACS Appl. Mater. Interfaces 2021, 13, 44904.

[19]

H. Shintaku, T. Nakagawa, D. Kitagawa, H. Tanujaya, S. Kawano, J. Ito, Sens. Actuators A Phys. 2010, 158, 183.

[20]

T. Inaoka, H. Shintaku, T. Nakagawa, S. Kawano, H. Ogita, T. Sakamoto, S. Hamanishi, H. Wada, J. Ito, Proc. Natl. Acad. Sci. USA 2011, 108, 18390.

[21]

T. Nakagawa, S. Kawano, in Regenerative Medicine for the Inner Ear (Ed: J. Ito), Springer Japan, Tokyo 2014, p. 157.

[22]

N. Mukherjee, R. D. Roseman, J. P. Willging, J. Biomed. Mater. Res. 2000, 53, 181.

[23]

B. Azimi, M. Milazzo, A. Lazzeri, S. Berrettini, M. J. Uddin, Z. Qin, M. J. Buehler, S. Danti, Adv. Healthc. Mater. 2020, 9, 1901287.

[24]

F. Mokhtari, B. Azimi, M. Salehi, S. Hashemikia, S. Danti, J. Mech. Behav. Biomed. Mater. 2021, 122, 104669.

[25]

L. Peng, X. Jin, J. Niu, W. Wang, H. Wang, H. Shao, C. Lang, T. Lin, J. Mater. Chem. C 2021, 9, 3477.

[26]

Y. H. Jung, J. An, D. Y. Hyeon, H. S. Wang, I. Kim, C. K. Jeong, K.-I. Park, P. S. Lee, K. J. Lee, Adv. Funct. Mater. 2024, 34, 2309316.

[27]

H. S. Lee, J. Chung, G.-T. Hwang, C. K. Jeong, Y. Jung, J.-H. Kwak, H. Kang, M. Byun, W. D. Kim, S. Hur, S.-H. Oh, K. J. Lee, Adv. Funct. Mater. 2014, 24, 6914.

[28]

M. Saadatzi, M. N. Saadatzi, S. Banerjee, IEEE Sens. J. 2020, 20, 11163.

[29]

S. Gong, L. W. Yap, Y. Zhu, B. Zhu, Y. Wang, Y. Ling, Y. Zhao, T. An, Y. Lu, W. Cheng, Adv. Funct. Mater. 2020, 30, 1910717.

[30]

J. Jang, J. Lee, S. Woo, D. J. Sly, L. J. Campbell, J.-H. Cho, S. J. O’Leary, M.-H. Park, S. Han, J.-W. Choi, J. Hun Jang, H. Choi, Sci. Rep. 2015, 5, 12447.

[31]

C. Lang, J. Fang, H. Shao, X. Ding, T. Lin, Nat. Commun. 2016, 7, 11108.

[32]

F. Mokhtari, G. M. Spinks, C. Fay, Z. Cheng, R. Raad, J. Xi, J. Foroughi, Adv. Mater. Technol. 2020, 5, 1900900.

[33]

B. Kim, D. Y. Hyeon, K.-I. Park, J. Korean Inst. Electr. Electron. Mater. Eng. 2023, 36, 525.

[34]

F. Mokhtari, G. M. Spinks, S. Sayyar, Z. Cheng, A. Ruhparwar, J. Foroughi, Adv. Mater. Technol. 2021, 6, 2000841.

[35]

N. A. Shepelin, P. C. Sherrell, E. N. Skountzos, E. Goudeli, J. Zhang, V. C. Lussini, B. Imtiaz, K. A. S. Usman, G. W. Dicinoski, J. G. Shapter, J. M. Razal, A. V. Ellis, Nat. Commun. 2021, 12, 3171.

[36]

R. A. Surmenev, T. Orlova, R. V. Chernozem, A. A. Ivanova, A. Bartasyte, S. Mathur, M. A. Surmeneva, Nano Energy 2019, 62, 475.

[37]

S. Mishra, R. Sahoo, L. Unnikrishnan, A. Ramadoss, S. Mohanty, S. K. Nayak, Mater. Res. Bull. 2020, 124, 110732.

[38]

X. Hu, Z. Ding, L. Fei, Y. Xiang, Y. Lin, J. Mater. Sci. 2019, 54, 6401.

[39]

F. Mokhtari, Z. Cheng, R. Raad, J. Xi, J. Foroughi, J. Mater. Chem. A 2020, 8, 9496.

[40]

N. D. Kulkarni, P. Kumari, J. Polym. Res. 2023, 30, 79.

[41]

F. S. Gill, D. Uniyal, B. Prasad, S. Saluja, A. Mishra, R. K. Bachheti, S. Juyal, J. Mol. Struct. 2022, 1267, 133541.

[42]

N. Dilip Kulkarni, M. Kumar, P. Kumari, Mater. Today Proc. 2023, 76, 81.

[43]

U. Yaqoob, G.-S. Chung, Smart Mater. Struct. 2017, 26, 095060.

[44]

Y. Su, W. Li, X. Cheng, Y. Zhou, S. Yang, X. Zhang, C. Chen, T. Yang, H. Pan, G. Xie, G. Chen, X. Zhao, X. Xiao, B. Li, H. Tai, Y. Jiang, L.-Q. Chen, F. Li, J. Chen, Nat. Commun. 2022, 13, 4867.

[45]

S. P. Muduli, S. Parida, S. K. Behura, S. Rajput, S. K. Rout, S. Sareen, Polym. Adv. Technol. 2022, 33, 3628.

[46]

H. M. A Yaseen, S. Park, Nanomaterials 2023, 13, 860.

[47]

L. Yang, Q. Zhao, Y. Hou, L. Hong, H. Ji, L. Xu, K. Zhu, M. Shen, H. Huang, H. He, J. Qiu, Compos. Sci. Technol. 2019, 174, 33.

[48]

Y. Zhao, Y. Zhang, Z. He, H. Zhang, H. Wang, Y. Zhao, New J. Chem. 2022, 46, 10577.

[49]

T. Dufay, B. Guiffard, R. Seveno, J. C. Thomas, Energ. Technol. 2018, 6, 917.

[50]

S. A. Riquelme, K. Ramam, Mater. Res. Exp. 2019, 6, 116331.

[51]

C. Sukumaran, V. Vivekananthan, V. Mohan, Z. C. Alex, A. Chandrasekhar, S.-J. Kim, Appl. Mater. Today 2020, 19, 100625.

[52]

F. Mokhtari, J. Foroughi, T. Zheng, Z. Cheng, G. M. Spinks, J. Mater. Chem. A 2019, 7, 8245.

[53]

B. Mahanty, S. K. Ghosh, S. Jana, K. Roy, S. Sarkar, D. Mandal, Sustain. Energy Fuels 2021, 5, 1003.

[54]

S. B. Horowitz, M. Sheplak, L. N. Cattafesta, T. Nishida, J. Micromech. Microeng. 2006, 16, S174.

[55]

Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee, J. Kim, J. Myoung, S. Cho, S. Kang, C. Baig, H. Ko, ACS Nano 2018, 12, 4045.

[56]

R. Fettiplace, Compr. Physiol. 2017, 7, 1197.

[57]

P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, N. E. Fusenig, J. Cell Biol. 1988, 106, 761.

[58]

F. Kalinec, G. Kalinec, M. Boukhvalova, B. Kachar, Cell Biol. Int. 1999, 23, 175.

[59]

L. A. Greene, A. S. Tischler, Proc. Natl. Acad. Sci. USA 1976, 73, 2424.

[60]

L. Astolfi, E. Simoni, A. Martini, Hear. Balance Commun. 2015, 13, 166.

[61]

F. Valente, E. Simoni, E. Gentilin, A. Martini, E. Zanoletti, G. Marioni, P. Nicolai, L. Astolfi, Int. J. Mol. Sci. 2022, 23, 14881.

[62]

M. Candito, E. Simoni, E. Gentilin, A. Martini, G. Marioni, S. Danti, L. Astolfi, Int. J. Mol. Sci. 2022, 23, 1761.

[63]

A. Adan, Y. Kiraz, Y. Baran, Curr. Pharm. Biotechnol. 2016, 17, 1213.

[64]

F. Mokhtari, G. M. Spinks, S. Sayyar, J. Foroughi, Nanomaterials 2021, 11, 2153.

[65]

C. Kumar, P. Viswanath, Eur. Polym. J. 2017, 86, 132.

[66]

S. Sayyar, E. Murray, B. C. Thompson, S. Gambhir, D. L. Officer, G. G. Wallace, Carbon 2013, 52, 296.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/