PDF
Abstract
This study introduces a cut-to-fit methodology for customizing bulk aramid aerogels into form factors suitable for wearable energy storage. Owing to strong intercomponent bonds within aramid-based building blocks, it is possible to delaminate layered bulk aerogel into flexible and thinner sheets, enabling efficient mass production. This process allows for precise customization of aerogel dimensions, shape, and elasticity, ensuring high resilience to deformation along with excellent thermal and impact resistance. Incorporation of conductive carbon nanotubes on the surface significantly enhances electrical conductivity and multi-catalytic activity while retaining the inherent advantages of aramids. These advancements facilitate the use of flexible and conductive electrodes as air cathodes in solid-state zinc–air batteries (ZABs), which demonstrate superior cyclic performance and lifecycles exceeding 160 h. Furthermore, aramid-based packaging provides superior protection for pouch-type ZABs, ensuring a consistent power supply even in severe conditions. These batteries are capable of withstanding structural deformations and absorbing physical and thermal shocks, such as impacts and exposure to fire. Moreover, the innovative reassembly of custom-cut single-pouch cells into battery modules allows for enhanced power output, tailored to wearable applications. This highlights the potential of the technology for a wide array of wearable devices requiring dependable energy sources in demanding environments.
Keywords
aramid nanofibers
/
layer-structured
/
mass production
/
solid-state batteries
/
super-elasticity
Cite this article
Download citation ▾
Seung Hee Park, Sin Yeong Jang, Sung Hoon Ahn.
Mass Produced Flexible Aramid Electrodes Via Delamination of Layered Aerogels for Cut-to-Fit Wearable Zinc–Air Batteries Encased in Aramid Protection.
Energy & Environmental Materials, 2025, 8(1): e12804 DOI:10.1002/eem2.12804
| [1] |
K. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen, X. Chi, H. Lu, Z. Chen, R. Zou, T. Li, C. Jiang, Y. Chen, X. Peng, J. Lu, Adv. Mater. 2020, 32, 2002292.
|
| [2] |
H. Zou, G. Li, L. Duan, Z. Kou, J. Wang, Appl. Catal. Environ. 2019, 259, 118100.
|
| [3] |
Z. Q. Lin, Z. P. Zeng, X. C. Gui, Z. K. Tang, M. C. Zou, A. Y. Cao, Adv. Energy Mater. 2016, 6, 1600554.
|
| [4] |
Y. Ma, D. Chen, D. Zhang, H. Yu, Y. Zheng, W. Li, L. Wang, Q. Liu, W. Yang, Carbon 2022, 187, 196.
|
| [5] |
Q. Li, Z. Sun, C. Yin, Y. Chen, D. Pan, B. Yu, Y. Zhang, T. He, S. Chen, Chem. Eng. J. 2023, 458, 141492.
|
| [6] |
L. dos Santos-Gómez, J. R. García, M. A. Montes-Morán, J. A. Menéndez, S. García-Granda, A. Arenillas, Small 2021, 17, 2103407.
|
| [7] |
G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.-M. Lee, Y. Tang, Adv. Mater. 2018, 30, 1704609.
|
| [8] |
K. H. Kim, Y. Oh, M. F. Islam, Nat. Nanotechnol. 2012, 7, 562.
|
| [9] |
P. Lv, X.-W. Tan, K.-H. Yu, R.-L. Zheng, J.-J. Zheng, W. Wei, Carbon 2016, 99, 222.
|
| [10] |
J. Liu, M. M. Hu, J. Q. Wang, N. Y. Nie, Y. Y. Wang, Y. K. Wang, J. H. Zhang, Y. Huang, Nano Energy 2019, 58, 338.
|
| [11] |
M. Yan, X. Cheng, L. Shi, Y. Pan, P. He, Z. Zhang, Z. Lun, Y. Fu, H. Zhang, Chem. Eng. J. 2023, 455, 140616.
|
| [12] |
H. Zhuo, Y. J. Hu, X. Tong, Z. H. Chen, L. X. Zhong, H. H. Lai, L. X. Liu, S. S. Jing, Q. Z. Liu, C. F. Liu, X. W. Peng, R. C. Sun, Adv. Mater. 2018, 30, 1706705.
|
| [13] |
H. C. Kim, H. A. Sodano, Adv. Funct. Mater. 2023, 33, 2208661.
|
| [14] |
J. Wu, J. Zhang, M. Sang, Z. Li, J. Zhou, Y. Wang, S. Xuan, K. C.-F. Leung, X. Gong, Adv. Funct. Mater. 2024, 34, 2307072.
|
| [15] |
Q. Yin, H. Jia, G. Liu, Q. Ji, Adv. Funct. Mater. 2022, 32, 2111177.
|
| [16] |
S. R. Kwon, J. Harris, T. Zhou, D. Loufakis, J. G. Boyd, J. L. Lutkenhaus, ACS Nano 2017, 11, 6682.
|
| [17] |
F. Baskoro, H.-J. Lin, C.-W. Chang, C.-L. Wang, A. L. Lubis, H.-J. Yen, J. Mater. Chem. A 2023, 11, 569.
|
| [18] |
K. Wu, J. Wang, D. Liu, C. Lei, D. Liu, W. Lei, Q. Fu, Adv. Mater. 2020, 32, 1906939.
|
| [19] |
B. Yang, M. Zhang, Z. Lu, J. Tan, J. Luo, S. Song, X. Ding, L. Wang, P. Lu, Q. Zhang, Carbohydr. Polym. 2019, 208, 372.
|
| [20] |
S. Bourbigot, X. Flambard, F. Poutch, Polym. Degrad. Stab. 2001, 74, 283.
|
| [21] |
B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, ACS Nano 2019, 13, 7886.
|
| [22] |
B. Yang, W. Li, M. Zhang, L. Wang, X. Ding, ACS Nano 2021, 15, 7195.
|
| [23] |
Q. Liu, M. Shen, C. Duan, L. Zhang, J. Zhu, Y. Ni, ACS Appl. Energy Mater. 2022, 51, 15146.
|
| [24] |
G. Ren, Q. Chen, J. Zheng, B. Huang, Y. Qian, J. Electroanal. Chem. 2018, 829, 177.
|
| [25] |
L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, ACS Nano 2020, 14, 10633.
|
| [26] |
A. Patel, D. Loufakis, P. Flouda, I. George, C. Shelton, J. Harris, S. Oka, J. L. Lutkenhaus, ACS Appl. Energy Mater. 2020, 3, 11763.
|
| [27] |
Q. Yin, H. Jia, A. Mohamed, Q. Ji, L. Hong, Nanoscale 2020, 12, 5507.
|
| [28] |
C. Zhou, S. Zhao, H. Meng, Y. Han, Q. Jiang, B. Wang, X. Shi, W. Zhang, L. Zhang, R. Zhang, Nano Lett. 2021, 21, 9633.
|
| [29] |
P. Wang, Y. Lin, L. Wan, B. Wang, ACS Appl. Mater. Interfaces 2019, 11, 37701.
|
| [30] |
Y.-F. Xu, Y. Chen, G.-L. Xu, X.-R. Zhang, Z. Chen, J.-T. Li, L. Huang, K. Amine, S.-G. Sun, Nano Energy 2016, 28, 63.
|
| [31] |
C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo, Y. Zhang, S.-H. Kim, D.-H. Kim, S. S. Shinde, Y.-F. Li, Z.-P. Liu, Z. Jiang, J.-H. Lee, Nat. Catal. 2021, 4, 1012.
|
| [32] |
N. Wang, S. L. Ning, X. L. Yu, D. Chen, Z. L. Li, J. C. Xu, H. Meng, D. K. Zhao, L. G. Li, Q. M. Liu, B. Z. Lu, S. W. Chen, Appl. Catal. Environ. 2022, 302, 120838.
|
| [33] |
C. Xie, L. He, Y. Shi, Z.-X. Guo, T. Qiu, X. Tuo, ACS Nano 2019, 13, 7811.
|
| [34] |
C. Zhou, X. Chen, S. Liu, Y. Han, H. Meng, Q. Jiang, S. Zhao, F. Wei, J. Sun, T. Tan, R. Zhang, J. Am. Chem. Soc. 2022, 144, 2694.
|
| [35] |
S. Yan, W. Liao, M. Zhong, W. Li, C. Wang, N. Pinna, W. Chen, X. Lu, Appl. Catal. Environ. 2022, 307, 121199.
|
| [36] |
F. Yang, M. J. Kim, M. Brown, B. J. Wiley, Adv. Energy Mater. 2020, 10, 2001174.
|
| [37] |
M. Moloudi, A. Noori, M. S. Rahmanifar, Y. Shabangoli, M. F El-Kady, N. B. Mohamed, R. B. Kaner, M. F. Mousavi, Adv. Energy Mater. 2023, 13, 2203002.
|
| [38] |
J. Dang, M. Yin, D. Pan, Z. Tian, G. Chen, J. Zou, H. Miao, Q. Wang, J. Yuan, Chem. Eng. J. 2023, 457, 141357.
|
| [39] |
G. Z. Zhou, G. S. Liu, X. B. Liu, Q. P. Yu, H. M. Mao, Z. Y. Xiao, L. Wang, Adv. Funct. Mater. 2022, 32, 2107608.
|
| [40] |
J. N. Song, Y. Chen, H. J. Huang, J. J. Wang, S. C. Huang, Y. F. Liao, A. E. Fetohi, F. Hu, H. Y. Chen, L. L. Li, X. P. Han, K. M El-Khatib, S. J. Peng, Adv. Sci. 2022, 9, 2104522.
|
| [41] |
S. Ramakrishnan, D. B. Velusamy, S. Sengodan, G. Nagaraju, D. H. Kim, A. R. Kim, D. J. Yoo, Appl. Catal. Environ. 2022, 300, 120752.
|
| [42] |
Y. Qiu, Y. Rao, Y. Zheng, H. Hu, W. Zhang, X. Guo, InfoMat 2022, 4, e12326.
|
| [43] |
D. Li, W. Wan, Z. Wang, H. Wu, S. Wu, T. Jiang, G. Cai, C. Jiang, F. Ren, Adv. Energy Mater. 2022, 12, 2201913.
|
| [44] |
Y. Dong, Z. Fang, W. Yang, B. Tang, Q. Liu, ACS Appl. Mater. Interfaces 2022, 14, 10277.
|
| [45] |
J. Chen, J. Huang, R. Wang, W. Feng, H. Wang, T. Luo, Y. Hu, C. Yuan, L. Feng, L. Cao, K. Kajiyoshi, C. He, Y. Liu, Z. Li, Y. Feng, Chem. Eng. J. 2022, 441, 136078.
|
| [46] |
Q. Zhang, W. Xiao, W. H. Guo, Y. X. Yang, J. L. Lei, H. Q. Luo, N. B. Li, Adv. Funct. Mater. 2021, 31, 2102117.
|
| [47] |
Q. Jin, B. Ren, H. Cui, C. Wang, Appl. Catal. Environ. 2021, 283, 119643.
|
| [48] |
Y. L. Dang, T. L. Wu, H. Y. Tan, J. L. Wang, C. Cui, P. Kerns, W. Zhao, L. Posada, L. Y. Wen, S. L. Suib, Energ. Environ. Sci. 2021, 14, 5433.
|
| [49] |
K. Q. Dai, N. Zhang, L. L. Zhang, L. X. Yin, Y. F. Zhao, B. Zhang, Chem. Eng. J. 2021, 414, 128804.
|
| [50] |
Y. Cheng, H. R. Guo, P. F. Yuan, X. P. Li, L. R. Zheng, R. Song, Chem. Eng. J. 2021, 413, 127531.
|
| [51] |
J. Balamurugan, T. T. Nguyen, D. H. Kim, N. H. Kim, J. H. Lee, Appl. Catal. Environ. 2021, 286, 119909.
|
| [52] |
Z. Zhang, X. Zhao, S. Xi, L. Zhang, Z. Chen, Z. Zeng, M. Huang, H. Yang, B. Liu, S. J. Pennycook, P. Chen, Adv. Energy Mater. 2020, 10, 2002896.
|
| [53] |
X. Zhong, Z. Zheng, J. Xu, X. Xiao, C. Sun, M. Zhang, J. Ma, B. Xu, K. Yu, X. Zhang, H.-M. Cheng, G. Zhou, Adv. Mater. 2023, 35, 2209980.
|
| [54] |
X. Yang, Z. Zhou, Y. Zou, J. Kuang, D. Ye, S. Zhang, Q. Gao, S. Yang, X. Cai, Y. Fang, Appl. Catal. Environ. 2023, 325, 122332.
|
| [55] |
H. Pang, M. Wang, P. Sun, W. Zhang, D. Wang, R. Zhang, L. Qiao, W. Wang, M. Gao, Y. Li, J. Chen, K. Liang, B. Kong, NPG Asia Mater. 2023, 15, 15.
|
| [56] |
Y. Chen, X. Kong, Y. Wang, H. Ye, J. Gao, Y. Qiu, S. Wang, W. Zhao, Y. Wang, J. Zhou, Q. Yuan, Chem. Eng. J. 2023, 454, 140512.
|
| [57] |
Y. Sha, Y. Peng, K. Huang, L. Li, Z. Liu, Adv. Energy Mater. 2022, 12, 2200906.
|
| [58] |
K. Harish, J. Balamurugan, T. T. Nguyen, N. H. Kim, J. H. Lee, Appl. Catal. Environ. 2022, 305, 120924.
|
| [59] |
Y. Han, H. Duan, C. Zhou, H. Meng, Q. Jiang, B. Wang, W. Yan, R. Zhang, Nano Lett. 2022, 22, 2497.
|
| [60] |
N. N. Xu, J. A. Wilson, Y. D. Wang, T. S. Su, Y. N. Wei, J. L. Qiao, X. D. Zhou, Y. X. Zhang, S. H. Sun, Appl. Catal. Environ. 2020, 272, 118953.
|
| [61] |
L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou, R. Lv, Adv. Mater. 2022, 34, 2105410.
|
| [62] |
X. Wang, Y. Yang, R. Wang, L. Li, X. Zhao, W. Zhang, Langmuir 2022, 38, 7280.
|
| [63] |
Y. Ma, D. Chen, W. Li, Y. Zheng, L. Wang, G. Shao, Q. Liu, W. Yang, Energy Environ Mater. 2022, 5, 543.
|
| [64] |
T. Liu, J. R. Mou, Z. P. Wu, C. Lv, J. L. Huang, M. L. Liu, Adv. Funct. Mater. 2020, 30, 2003407.
|
| [65] |
Z. Pan, J. Yang, W. Zang, Z. Kou, C. Wang, X. Ding, C. Guan, T. Xiong, H. Chen, Q. Zhang, Y. Zhong, M. Liu, L. Xing, Y. Qiu, W. Li, C. Yan, Y. Zhang, J. Wang, Energy Storage Mater. 2019, 23, 375.
|
| [66] |
O. S. Jeon, E. S. Ko, Y. Y. Park, D. Hong, S. H. Lee, Y. P. Jeon, Y. La, S. Kim, I.-S. Lee, G.-S. Park, E. J. Lee, S. Kang, Y. J. Yoo, S. Y. Park, Adv. Energy Mater. 2023, 13, 2300285.
|
RIGHTS & PERMISSIONS
2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.