Understanding the Intrinsic Mechanism of High-Performance Electrocatalytic Nitrogen Fixation by Heterogenization of Homonuclear Dual-Atom Catalysts

Yuefei Zhang , Yu Yang , Yu Zhang , Xuefei Liu , Wenjun Xiao , Degui Wang , Gang Wang , Zhen Wang , Jinshun Bi , Jincheng Liu , Xun Zhou , Wentao Wang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12803

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (2) : e12803 DOI: 10.1002/eem2.12803
RESEARCH ARTICLE

Understanding the Intrinsic Mechanism of High-Performance Electrocatalytic Nitrogen Fixation by Heterogenization of Homonuclear Dual-Atom Catalysts

Author information +
History +
PDF

Abstract

A heteronuclear dual transition metal atom catalyst is a promising strategy to solve and relieve the increasing energy and environment crisis. However, the role of each atom still does not efficiently differentiate due to the high activity but low detectability of each transition metal in the synergistic catalytic process when considering the influence of heteronuclear induced atomic difference for each transition metal atom, thus seriously hindering intrinsic mechanism finding. Herein, we proposed coordinate environment vary induced heterogenization of homonuclear dual-transition metal, which inherits the advantage of heteronuclear transition metal atom catalyst but also controls the variable of the two atoms to explore the underlying mechanism. Based on this proposal, employing density functional theory study and machine learning, 23 kinds of homonuclear transition metals are doping in four asymmetric C3N for heterogenization to evaluate the underlying catalytic mechanism. Our results demonstrate that five catalysts exhibit excellent catalytic performance with a low limiting potential of -0.28 to -0.48 V. In the meantime, a new mechanism, “capture–charge distribution–recapture–charge redistribution”, is developed for both side-on and end-on configuration. More importantly, the pronate site of the first hydrogenation is identified based on this mechanism. Our work not only initially makes a deep understanding of the transition dual metal-based heteronuclear catalyst indirectly but also broadens the development of complicated homonuclear dual-atom catalysts in the future.

Keywords

electrocatalyst / first principles / heterogenization of homonuclear / machine learning / nitrogen reduction reaction

Cite this article

Download citation ▾
Yuefei Zhang, Yu Yang, Yu Zhang, Xuefei Liu, Wenjun Xiao, Degui Wang, Gang Wang, Zhen Wang, Jinshun Bi, Jincheng Liu, Xun Zhou, Wentao Wang. Understanding the Intrinsic Mechanism of High-Performance Electrocatalytic Nitrogen Fixation by Heterogenization of Homonuclear Dual-Atom Catalysts. Energy & Environmental Materials, 2025, 8(2): e12803 DOI:10.1002/eem2.12803

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Chu, A. Majumdar, Nature 2012, 488, 294.

[2]

J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611.

[3]

M. M. Rodriguez, E. Bill, W. W. Brennessel, P. L. Holland, Science 2011, 334, 780.

[4]

C. J. van der Ham, M. T. Koper, D. G. Hetterscheid, Chem. Soc. Rev. 2014, 43, 5183.

[5]

C. Smith, A. K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 2020, 13, 331.

[6]

A. J. Martín, T. Shinagawa, J. Pérez-Ramírez, Chem 2019, 5, 263.

[7]

B. H. R Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nat. Catal. 2019, 2, 290.

[8]

L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Mater. 2018, 30, 1800191.

[9]

W. Tong, B. Huang, P. Wang, L. Li, Q. Shao, X. Huang, Angew. Chem. Int. Ed. Engl. 2020, 59, 2649.

[10]

X. Lv, L. Kou, T. Frauenheim, ACS Appl. Mater. Interfaces 2021, 13, 14283.

[11]

J. C. Liu, X. L. Ma, Y. Li, Y. G. Wang, H. Xiao, J. Li, Nat. Commun. 2018, 9, 1610.

[12]

H. Niu, X. Wang, C. Shao, Z. Zhang, Y. Guo, ACS Sustain. Chem. Eng. 2020, 8, 13749.

[13]

Z. Xue, X. Zhang, J. Qin, R. Liu, J. Energy Chem. 2021, 57, 443.

[14]

D. Ma, Z. Zeng, L. Liu, Y. Jia, J. Energy Chem. 2021, 54, 501.

[15]

S. Zhao, X. Lu, L. Wang, J. Gale, R. Amal, Adv. Mater. 2019, 31, 1805367.

[16]

L. Xu, L. M. Yang, E. Ganz, ACS Appl. Mater. Interfaces 2021, 13, 14091.

[17]

S. Y. Lv, G. Li, L. M. Yang, ACS Appl. Mater. Interfaces 2022, 14, 25317.

[18]

Z. Zhang, X. Xu, ACS Appl. Mater. Interfaces 2022, 14, 28900.

[19]

Y. Wu, C. He, W. Zhang, J. Am. Chem. Soc. 2022, 21, 9344.

[20]

J. Wang, C. Liu, S. Li, Y. Li, Q. Zhang, Q. Peng, J. S. Tse, Z. Wu, Chem. Eng. J. 2022, 428, 132558.

[21]

J. Jiao, R. Lin, S. Liu, W. C. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S. F. Hung, H. M. Chen, L. Zheng, Q. Lu, X. Yang, B. Xu, H. Xiao, J. Li, D. Wang, Q. Peng, C. Chen, Y. Li, Nat. Chem. 2019, 11, 222.

[22]

F. Li, X. Liu, Z. Chen, Small Methods 2019, 3, 1800480.

[23]

B. Wei, Z. Fu, D. Legut, T. C. Germann, S. Du, H. Zhang, J. S. Francisco, R. Zhang, Adv. Mater. 2021, 33, e2102595.

[24]

J. Wu, J. H. Li, Y. X. Yu, ACS Appl. Mater. Interfaces 2021, 13, 10026.

[25]

H. Liu, Q. Huang, W. An, Y. Wang, Y. Men, S. Liu, J. Energy Chem. 2021, 61, 507.

[26]

Y. Wu, C. He, W. Zhang, J. Energy Chem. 2023, 82, 375.

[27]

Y. Wu, C. He, W. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 47520.

[28]

R. Hu, Y. Yu, Y. Li, Y. Wang, J. Shang, Y. Nie, X. Jiang, Nano Res. 2022, 15, 8656.

[29]

X.-M. Liang, H.-J. Wang, C. Zhang, D.-C. Zhong, T.-B. Lu, Appl. Catal. B-Environ. 2023, 322, 122073.

[30]

T. Jitwatanasirikul, T. Roongcharoen, P. Sikam, K. Takahashi, T. Rungrotmongkol, S. Namuangruk, Adv. Mater. Interfaces 2023, 10, 2201904.

[31]

X. Hai, Y. Zheng, Q. Yu, N. Guo, S. Xi, X. Zhao, S. Mitchell, X. Luo, V. Tulus, M. Wang, X. Sheng, L. Ren, X. Long, J. Li, P. He, H. Lin, Y. Cui, X. Peng, J. Shi, J. Wu, C. Zhang, R. Zou, G. Guillén-Gosálbez, J. Pérez-Ramírez, M. J. Koh, Y. Zhu, J. Li, J. Lu, Nature 2023, 622, 754.

[32]

Y. N. Gong, C. Y. Cao, W. J. Shi, J. H. Zhang, J. H. Deng, T. B. Lu, D. C. Zhong, Angew. Chem. Int. Ed. Engl. 2022, 61, e202215187.

[33]

J. Guo, J. Huo, Y. Liu, W. Wu, Y. Wang, M. Wu, H. Liu, G. Wang, Small Methods 2019, 3, 1900159.

[34]

M. Yang, X. Wang, C. J. Gómez-García, Z. Jin, J. Xin, X. Cao, H. Ma, H. Pang, L. Tan, G. Yang, Y. Kan, Adv. Funct. Mater. 2023, 33, 2214495.

[35]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[36]

G. Kresse, Phys. Rev. B 1999, 59, 1758.

[37]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[38]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[39]

W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matter 2009, 21, 84204.

[40]

V. L. Deringer, A. L. Tchougreeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461.

[41]

R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, R. Dronskowski, J. Comput. Chem. 2020, 41, 1931.

[42]

G. J. Martyna, M. L. Klein, M. Tuckerman, J. Phys. Chem. 1992, 97, 2635.

[43]

K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 2014, 140, 84106.

[44]

V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033.

[45]

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. B. Pedersen, H. Jonsson, J. Phys. Chem. B 2004, 108, 17886.

[46]

J. Zhou, X. Chen, M. Guo, W. Hu, B. Huang, D. Yuan, ACS Catal. 2023, 13, 2190.

[47]

X. Liu, Y. Zhang, W. Wang, Y. Chen, W. Xiao, T. Liu, Z. Zhong, Z. Luo, Z. Ding, Z. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 1249.

[48]

H. Niu, X. Wan, X. Wang, C. Chen, J. Robertson, Z. Zhang, Y. Guo, ACS Sustain. Chem. Eng. 2021, 9, 3590.

[49]

G. Lin, Q. Ju, X. Guo, W. Zhao, S. Adimi, J. Ye, Q. Bi, J. Wang, M. Yang, F. Huang, Adv. Mater. 2021, 33, 2007509.

[50]

X. Liu, Y. Zhang, T. Liu, W. Wang, Z. Luo, Z. Zhang, W. Xiao, Appl. Surf. Sci. 2022, 605, 154831.

[51]

Y. Zeng, X. Zhang, C. Ai, C. Wang, Y. Liu, S. Lin, Appl. Surf. Sci. 2022, 582, 152474.

[52]

X. Wang, H. Niu, X. Wan, A. Wang, F. R. Wang, Y. Guo, ACS Sustain. Chem. Eng. 2022, 10, 7692.

[53]

V. O. Özçelik, H. H. Gurel, S. Ciraci, Phys. Rev. B 2013, 88, 45440.

[54]

W. Nong, S. Qin, F. Huang, H. Liang, Z. Yang, C. Qi, Y. Li, C. Wang, Carbon 2021, 182, 297.

[55]

H. Niu, Z. Zhang, X. Wang, X. Wan, C. Shao, Y. Guo, Adv. Funct. Mater. 2020, 31, 2008533.

[56]

Acree WENCW, NIST Standard, and RDNNIoS, Technology, M. Gaithersburg, Chemistry, http://webbook.nist.gov/ (accessed May 2021).

[57]

Y. Zhu, J. Sokolowski, X. Song, Y. He, Y. Mei, G. Wu, Adv. Energy Mater. 2019, 10, 1902844.

[58]

H. Gong, Z. Wei, Z. Gong, J. Liu, G. Ye, M. Yan, J. Dong, C. Allen, J. Liu, K. Huang, R. Liu, G. He, S. Zhao, H. Fei, Adv. Funct. Mater. 2021, 32, 2106886.

[59]

Y. L. Yanyang Qin, W. Zhao, S. Chen, W. Tiantian, S. Yaqiong, Nano Res. 2022, 16, 325.

[60]

X. Lv, W. Wei, F. Li, B. Huang, Y. Dai, Nano Lett. 2019, 19, 6391.

[61]

W. Zhong, Y. Qiu, H. Shen, X. Wang, J. Yuan, C. Jia, S. Bi, J. Jiang, J. Am. Chem. Soc. 2021, 143, 4405.

[62]

Z. Li, Z. Wang, S. Xi, X. Zhao, T. Sun, J. Li, W. Yu, H. Xu, T. S. Herng, X. Hai, P. Lyu, M. Zhao, S. J. Pennycook, J. Ding, H. Xiao, J. Lu, ACS Nano 2021, 15, 7105.

[63]

Y. Zhang, Q. Zhang, D. X. Liu, Z. Wen, J. X. Yao, M. M. Shi, Y. F. Zhu, J. M. Yan, Q. Jiang, Appl. Catal. B-Environ. 2021, 298, 120592.

[64]

Q. Dang, S. Tang, T. Liu, X. Li, X. Wang, W. Zhong, Y. Luo, J. Jiang, J. Phys. Chem. Lett. 2021, 12, 8355.

[65]

Z. Sun, L. Lin, J. He, D. Ding, T. Wang, J. Li, M. Li, Y. Liu, Y. Li, M. Yuan, B. Huang, H. Li, G. Sun, J. Am. Chem. Soc. 2022, 144, 8204.

[66]

L. Fang, G. Gou, J. Shang, M. Liu, Q. Gu, L. Li, J. Colloid Interface Sci. 2022, 627, 931.

[67]

Y. Zhang, X. Wang, T. Liu, Q. Dang, L. Zhu, Y. Luo, J. Jiang, S. Tang, J. Mater. Chem. A 2022, 10, 23704.

[68]

N. Li, Z. Wang, P. Zhang, X. Li, A. Arramel, C. Sun, X. Zhou, X. Zhao, J. Mater. Chem. A 2022, 10, 22760.

[69]

S. Gao, X. Liu, Z. Wang, Y. Lu, R. Sa, Q. Li, C. Sun, X. Chen, Z. Ma, J. Colloid Interface Sci. 2023, 630, 215.

[70]

H. Xu, D. Cheng, D. Cao, X. Zeng, Nat. Catal. 2018, 1, 339.

[71]

M. R. Zhao, B. Song, L. M. Yang, ACS Appl. Mater. Interfaces 2021, 13, 26109.

[72]

X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, Adv. Funct. Mater. 2020, 31, 2008056.

[73]

J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimmingc, J. Electrochem. Soc. 2005, 152, 23.

[74]

S. Y. Lv, C. X. Huang, G. Li, L. M. Yang, Energy Environ. Mater. 2022, 5, 533.

[75]

S. Y. Lv, G. Li, L. M. Yang, J. Colloid Interface Sci. 2022, 621, 24.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

234

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/