Real-Time Detection of Sub-ppm Aromatic Compounds in Alcohol by Surface Plasmon Resonance Using Label-Free Graphene

Sung Hwan Cho , Jun Min Suh , Wontaek Kim , Jaehyun Kim , Yeong Jae Kim , Tae Hyung Lee , Jae Young Kim , Jaegun Sim , Seung Won Choi , Byung Hee Hong , So Young Kim , Ho Won Jang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12801

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12801 DOI: 10.1002/eem2.12801
RESEARCH ARTICLE

Real-Time Detection of Sub-ppm Aromatic Compounds in Alcohol by Surface Plasmon Resonance Using Label-Free Graphene

Author information +
History +
PDF

Abstract

The increasing importance of high-purity isopropyl alcohol (IPA) in semiconductor processing technology has led to a higher demand for technologies capable of detecting impurities in IPA. Although accurate and various impurity detection technologies have been developed, most of them have limitations in real-time and repeatable detection of impurities. Herein, for the first time, surface plasmon resonance (SPR) sensor was developed utilizing graphene transferred Au film (Au/graphene) to detect sub-ppm levels of 2,4-dinitrophenol (2,4-DNP) dissolved in IPA and this sensor demonstrates the ability to detect 2,4-DNP in real-time with great reversibility. The adsorption of 2,4-DNP to graphene is found to be stronger than that for Au film because of noncovalent graphene π–π stacking interaction, and the effect of graphene is demonstrated through density function theory (DFT) calculations and enhancement in sensing performance of Au/graphene sensor. Additionally, the presence of noncovalent π–π stacking interaction between 2,4-DNP and graphene has been demonstrated by confirming the p-doping effect of graphene-based solution field-effect transistor measurements and consecutive Raman spectra analysis. This study offers experimental and theoretical insights into the adsorption kinetics of 2,4-DNP dissolved in IPA and provides promising perspectives for real-time sensing technology utilizing label-free graphene to detect impurities in high-purity cleaning agents.

Keywords

density functional theory / graphene / liquid sensor / surface plasmon resonance / π–π stacking interaction

Cite this article

Download citation ▾
Sung Hwan Cho, Jun Min Suh, Wontaek Kim, Jaehyun Kim, Yeong Jae Kim, Tae Hyung Lee, Jae Young Kim, Jaegun Sim, Seung Won Choi, Byung Hee Hong, So Young Kim, Ho Won Jang. Real-Time Detection of Sub-ppm Aromatic Compounds in Alcohol by Surface Plasmon Resonance Using Label-Free Graphene. Energy & Environmental Materials, 2025, 8(1): e12801 DOI:10.1002/eem2.12801

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Osburn, H. Berger, R. Donovan, G. Jones, J. IEST 1988, 31, 45.

[2]

T. Ohmi, H. Mishima, IEEE Trans. Semicond. Manuf. 1994, 7, 440.

[3]

Y. Fujimura, T. Kawakatsu, K. Nakagawa, T. Shintani, T. Yoshioka, J. Mol. Liq. 2022, 347, 118366.

[4]

W. Geiger, E. McCurdy, M. Kelinske, Spectroscopy Suppl. 2023, 38, 12.

[5]

M. Cha, C. Boo, C. Park, Process. Saf. Environ. Prot. 2022, 159, 525.

[6]

Z. H. Jabbar, S. E. Ebrahim, Environ. Nanotechnol. Monit. Manag 2022, 17, 100666.

[7]

A. Jebelli, F. Oroojalian, F. Fathi, A. Mokhtarzadeh, M. de la Guardia, Biosens. Bioelectron. 2020, 169, 112599.

[8]

G. Wang, Y. Lu, L. Duan, J. Yao, IEEE J. Sel. Top. Quantum Electron. 2020, 27(4), 1.

[9]

A. Koponen, E. Kerkelä, T. Rojalin, E. Lázaro-Ibáñez, T. Suutari, H. O. Saari, P. Siljander, M. Yliperttula, S. Laitinen, T. Viitala, Biosens. Bioelectron. 2020, 168, 112510.

[10]

P. Berini, Adv. Opt. Photon. 2009, 1, 484.

[11]

J. Homola, Chem. Rev. 2008, 108, 462.

[12]

H. Zhang, Y. Geng, S. Xu, W. Xu, Y. Tian, J. Yu, W. Deng, B. Yu, Y. Liu, J. Phys. Chem. C 2019, 124, 1640.

[13]

E. Kretschmann, H. Raether, Zeitschrift für Naturforsch. A 1968, 23, 2135.

[14]

B. Liedberg, C. Nylander, I. Lunström, Sensors Actuators 1983, 4, 299.

[15]

F. Zheng, Z. Chen, J. Li, R. Wu, B. Zhang, G. Nie, Z. Xie, H. Zhang, Adv. Sci. 2022, 9, 2105231.

[16]

A. Kausaite-Minkstimiene, A. Ramanaviciene, A. Ramanavicius, Analyst 2009, 134, 2051.

[17]

J.-F. Masson, ACS Sens. 2017, 2, 16.

[18]

Z. Chen, J. Li, T. Li, T. Fan, C. Meng, C. Li, J. Kang, L. Chai, Y. Hao, Y. Tang, Natl. Sci. Rev. 2022, 9, nwac104.

[19]

N. S. Kaya, A. Yadav, M. Wehrhold, L. Zuccaro, K. Balasubramanian, ACS Omega 2018, 3, 7133.

[20]

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, Nat. Commun. 2019, 10, 28.

[21]

W. Wang, T. Sun, Y. Zhang, Y. Wang, J. Comput. Chem. 2015, 36, 1763.

[22]

M. Kolar, T. Oražem, V. Jovanovski, S. B. Hočevar, Sens. Actuators B 2021, 330, 129338.

[23]

A. Wörz, B. Berchtold, K. Moosmann, O. Prucker, J. Rühe, J. Mater. Chem. 2012, 22, 19547.

[24]

C. M. Das, Y. Guo, D. P. Poenar, Y. Ramaswamy, J. Xiong, M.-J. Yin, K.-T. Yong, ACS Appl. Electron. Mater 2022, 4, 1732.

[25]

G. Ma, R. Liang, Z. Wan, S. Wang, Nat. Commun. 2021, 12, 3365.

[26]

C. Hahnefeld, S. Drewianka, F. W. Herberg, Mol. Diagn. Infect. Dis. 2004, 94, 299.

[27]

S. M. Borisov, O. S. Wolfbeis, Chem. Rev. 2008, 108, 423.

[28]

T. Sulea, G. Hussack, S. Ryan, J. Tanha, E. O. Purisima, Sci. Rep. 2018, 8, 2260.

[29]

Y. Zhao, J. Li, H. Gu, D. Wei, Y. Xu, W. Fu, Z. Yu, Interdiscip. Sci. Comput. Life Sci. 2015, 7, 211.

[30]

C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525.

[31]

C. N. R Rao, R. Voggu, Mater. Today 2010, 13, 34.

[32]

S. Mohapatra, R. S. Moirangthem. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, Bengaluru, August 2018, p. 12017.

[33]

N. F. Murat, W. M. Mukhtar, A. R. A. Rashid, K. A. Dasuki, A. A. R. A. Yussuf, In 2016 IEEE International Conference on Semiconductor Electronics (ICSE), IEEE, Kuala Lumpur, August 2016.

[34]

J. Y. Jing, Q. Wang, W. M. Zhao, B. T. Wang, Opt. Lasers Eng. 2019, 112, 103.

[35]

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, Z. Chen, Adv. Opt. Mater. 2019, 7(13), 1.

[36]

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, R. S. Ruoff, ACS Nano 2011, 5, 6916.

[37]

R. P. Gollapalli, Opt. Lett. 2020, 45, 2862.

[38]

A. J. Braundmeier, E. T. Arakawa, J. Phys. Chem. Solid 1974, 35, 517.

[39]

M. Bal, M. Tümer, M. Köse, Mater. Chem. Phys. 2022, 289, 126480.

[40]

A. Supong, P. C. Bhomick, R. Karmaker, S. L. Ezung, L. Jamir, U. B. Sinha, D. Sinha, Appl. Surf. Sci. 2020, 529, 147046.

[41]

A. S. N Murthy, A. R. Reddy, Spectrochim. Acta Part A Mol. Spectroscopy 1982, 38, 91.

[42]

W. Chen, S. Chen, C. Q. Dong, Y. G. Xing, A. T. S. Wee, J. Am. Chem. Soc. 2007, 129, 10418.

[43]

H. Pinto, R. Jones, J. P. Goss, P. R. Briddon, J. Phys. Condens. Matter 2009, 21, 402001.

[44]

J. H. Bong, O. Sul, A. Yoon, S. Y. Choi, B. J. Cho, Nanoscale 2014, 6, 8503.

[45]

D. Shin, H. R. Kim, B. H. Hong, Nanoscale Adv. 2021, 3, 1404.

[46]

C. W. Lee, J. M. Suh, S. Choi, S. E. Jun, T. H. Lee, J. W. Yang, S. A. Lee, B. R. Lee, D. Yoo, S. Y. Kim, D. S. Kim, H. W. Jang, npj 2D Mater. Appl. 2021, 5(9), 1.

[47]

D. B. Farmer, G. M. Roksana, V. Perebeinos, Y. M. Lin, G. S. Tuievski, J. C. Tsang, P. Avouris, Nano Lett. 2009, 9, 388.

[48]

A. S. N Murthy, A. R. Reddy, Adv. Mol. Relax. Interact. Process. 1981, 19, 201.

[49]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Nat. Nanotechnol. 2008, 3, 210.

[50]

N.-Y. Kim, M.-K. Oh, S.-H. Park, S.-K. Kim, B.-H. Hong, Bull. Korean Chem. Soc. 2010, 31, 999.

[51]

L. Kong, A. Enders, T. S. Rahman, P. A. Dowben, J. Phys. Condens. Matter 2014, 26, 443001.

[52]

H. Lee, K. Paeng, I. S. Kim, Synth. Met. 2018, 244, 36.

[53]

E. Caro, N. Masqué, R. M. Marcé, F. Borrull, P. A. G. Cormack, D. C. Sherrington, J. Chromatogr. A 2002, 963, 169.

[54]

H. Wu, Z. Chen, J. Zhang, F. Wu, C. He, Y. Wu, Z. Ren, J. Mater. Chem. A 2017, 5, 24493.

[55]

A. Bijalwan, B. K. Singh, V. Rastogi, Plasmonics 2020, 15, 1015.

[56]

J. Volk, T. Le Grand, I. Bársony, J. Gombkötő, J. J. Ramsden, J. Phys. D Appl. Phys. 2005, 38, 1313.

[57]

P. Pourhakkak, A. Taghizadeh, M. Taghizadeh, M. Ghaedi, S. Haghdoust, Interface Science and Technology, Elsevier, Amsterdam 2021, pp. 1-70.

[58]

P. S. Menon, N. A. Jamil, G. S. Mei, A. R. M. Zain, D. W. Hewak, C.-C. Huang, M. A. Mohamed, B. Y. Majlis, R. K. Mishra, S. Raghavan, IEEE J. Electron Devices Soc. 2020, 8, 1227.

[59]

M. M. Hossain, M. A. Talukder, Opt. Commun. 2021, 493, 126994.

[60]

H. Cai, M. Wang, Z. Wu, J. Liu, X. Wang, Nano 2022, 12, 2219.

[61]

H. K. Rouf, T. Haque, Plasmonics 2021, 16, 1945.

[62]

J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Lett. 2003, 3, 929.

[63]

B. Nguyen, F. A. Tanious, W. D. Wilson, Methods 2007, 42, 150.

[64]

A. Paul, C. Musetti, R. Nanjunda, W. D. Wilson, G-Quadruplex Nucleic Acids: Methods and Protocols 2019, 63.

[65]

S. Chen, Y. Liu, Q. Yu, W. Peng, Sens. Actuators B 2021, 327, 128935.

[66]

R. Kant, Microchim. Acta 2020, 187(1), 1.

[67]

T. O. C Rahayu, N. L. W. Septiani, G. Gumilar, D. R. Adhika, B. Yuliarto, IEEE Sens. J 2021, 21, 19959.

[68]

M. Gomaa, A. Salah, G. A. Fattah, Opt. Laser Technol. 2023, 157, 108644.

[69]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, B. Y. Man, Sens. Actuators B Chem. 2017, 251, 127.

[70]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. Il Song, Nat. Nanotechnol. 2010, 5, 574.

[71]

E. Kretschmann, Opt. Commun. 1978, 26, 41.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/