Unlocking of Schottky Barrier Near the Junction of MoS2 Heterostructure Under Electrochemical Potential

Kubra Aydin , Mansu Kim , Hyunho Seok , Chulwoo Bae , Jinhyoung Lee , Muyoung Kim , Jonghwan Park , Joseph T. Hupp , Dongmok Whang , Hyeong-U Kim , Taesung Kim

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12800

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12800 DOI: 10.1002/eem2.12800
RESEARCH ARTICLE

Unlocking of Schottky Barrier Near the Junction of MoS2 Heterostructure Under Electrochemical Potential

Author information +
History +
PDF

Abstract

The exploration of heterostructures composed of two-dimensional (2D) transition metal dichalcogenide (TMDc) materials has garnered significant research attention due to the distinctive properties of each individual component and their phase-dependent unique properties. Using the plasma-enhanced chemical vapor deposition (PECVD) method, we analyze the fabrication of heterostructures consisting of two phases of molybdenum disulfide (MoS2) in four different cases. The initial hydrogen evolution reaction (HER) polarization curve indicates that the activity of the heterostructure MoS2 is consistent with that of the underlying MoS2, rather than the surface activity of the upper MoS2. This behavior can be attributed to the presence of Schottky barriers, which include contact resistance, which significantly hampers the efficient charge transfer at junctions between the two different phases of MoS2 layers and is mediated by van der Waals bonds. Remarkably, the energy barrier at the junction dissipates upon reaching a certain electrochemical potential, indicating surface activation from the top phase of MoS2 in the heterostructure. Notably, the 1T/2H MoS2 heterostructure demonstrates enhanced electrochemical stability compared to its metastable 1T-MoS2. This fundamental understanding paves the way for the creation of phase-controllable heterostructures through an experimentally viable PECVD, offering significant promise for a wide range of applications.

Keywords

hydrogen evolution reaction (HER) / molybdenum disulfide (MoS 2) / plasmaenhanced chemical vapor deposition (PECVD) / Schottky barrier / van der Waals (vdW) heterostructure

Cite this article

Download citation ▾
Kubra Aydin, Mansu Kim, Hyunho Seok, Chulwoo Bae, Jinhyoung Lee, Muyoung Kim, Jonghwan Park, Joseph T. Hupp, Dongmok Whang, Hyeong-U Kim, Taesung Kim. Unlocking of Schottky Barrier Near the Junction of MoS2 Heterostructure Under Electrochemical Potential. Energy & Environmental Materials, 2025, 8(1): e12800 DOI:10.1002/eem2.12800

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.

[2]

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.

[3]

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222.

[4]

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, X. Zheng, Nat. Mater. 2015, 15, 48.

[5]

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.

[6]

D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, Y. Cui, Nano Lett. 2013, 13, 1341.

[7]

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, P. M. Ajayan, Nano Lett. 2016, 16, 1097.

[8]

Y. Jiao, A. M. Hafez, D. Cao, A. Mukhopadhyay, Y. Ma, H. Zhu, Y. Jiao, A. M. Hafez, D. Cao, A. Mukhopadhyay, Y. Ma, H. Zhu, Small 2018, 14, 1800640.

[9]

S.-Z. Yang, Y. Gong, P. Manchanda, Y.-Y. Zhang, G. Ye, S. Chen, L. Song, S. T. Pantelides, P. M. Ajayan, M. F. Chisholm, W. Zhou, S.-Z. Yang, S. T. Pantelides, M. F. Chisholm, W. Zhou, Y. Gong, G. Ye, M. Ajayan, P. Manchanda, Y.-Y. Zhang, S. Chen, L. Song, Adv. Mater. 2018, 30, 1803477.

[10]

B. Shang, X. Cui, L. Jiao, K. Qi, Y. Wang, J. Fan, Y. Yue, H. Wang, Q. Bao, X. Fan, S. Wei, W. Song, Z. Cheng, S. Guo, W. Zheng, Nano Lett. 2019, 19, 2758.

[11]

Z. Cheng, Y. Xiao, W. Wu, X. Zhang, Q. Fu, Y. Zhao, L. Qu, ACS Nano 2021, 15, 11417.

[12]

S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du, H. Yin, X. Bi, S. Yang, S. Wang, D. Zhang, B. Li, C. Zhang, Z. G. Du, H. M. Yin, X. F. Bi, S. B. Yang, Adv. Energy Mater. 2018, 8, 1801345.

[13]

H.-U. Kim, V. Kanade, M. Kim, K. Seok Kim, B.-S. An, H. Seok, H. Yoo, L. E. Chaney, S.-I. Kim, C.-W. Yang, G. Yong Yeom, D. Whang, J.-H. Lee, T. Kim, Small 2020, 16, 1905000.

[14]

H. U. Kim, M. Kim, H. Seok, K. Y. Park, J. Y. Moon, J. Park, B. S. An, H. J. Jung, V. P. Dravid, D. Whang, J. H. Lee, T. Kim, ChemSusChem 2021, 14, 1344.

[15]

H. U. Kim, M. Kim, Y. Jin, Y. Hyeon, K. S. Kim, B. S. An, C. W. Yang, V. Kanade, J. Y. Moon, G. Y. Yeom, D. Whang, J. H. Lee, T. Kim, Appl. Surf. Sci. 2019, 470, 129.

[16]

H. Seok, M. Kim, J. Cho, E. Kim, S. Son, K. W. Kim, J. K. Kim, P. J. Yoo, M. Kim, H. U. Kim, T. Kim, ACS Sustain. Chem. Eng. 2023, 11, 568.

[17]

H. Seok, Y. T. Megra, C. K. Kanade, J. Cho, V. K. Kanade, M. Kim, I. Lee, P. J. Yoo, H. U. Kim, J. W. Suk, T. Kim, ACS Nano 2021, 15, 707.

[18]

C. K. Kanade, H. Seok, V. K. Kanade, K. Aydin, H. U. Kim, S. B. Mitta, W. J. Yoo, T. Kim, ACS Appl. Mater. Interfaces 2021, 13, 8710.

[19]

J. Cheng, J. He, C. Pu, C. Liu, X. Huang, D. Zhang, H. Yan, P. K. Chu, Energies 2022, 15, 6169.

[20]

T. Dat Ngo, M. Lee, Z. Yang, F. Ali, I. Moon, W. Jong Yoo, T. D. Ngo, M. Lee, Z. Yang, F. Ali, I. Moon, W. J. Yoo, Adv. Electron. Mater. 2020, 6, 2000616.

[21]

C. Ahn, J. Lee, H. U. Kim, H. Bark, M. Jeon, G. H. Ryu, Z. Lee, G. Y. Yeom, K. Kim, J. Jung, Y. Kim, C. Lee, T. Kim, Adv. Mater. 2015, 27, 5223.

[22]

S. Li, S. Zhou, X. Wang, P. Tang, M. Pasta, J. H. Warner, Mater. Today Energy 2019, 13, 134.

[23]

D. Wang, B. Su, Y. Jiang, L. Li, B. K. Ng, Z. Wu, F. Liu, Chem. Eng. J. 2017, 330, 102.

[24]

X. Liu, C. Wang, Catalysts 2020, 10, 977.

[25]

S. Hussain, J. Singh, D. Vikraman, A. K. Singh, M. Z. Iqbal, M. F. Khan, P. Kumar, D. C. Choi, W. Song, K. S. An, J. Eom, W. G. Lee, J. Jung, Sci. Rep. 2016, 6, 30791.

[26]

S. Kumar, A. Kumar, V. Navakoteswara Rao, A. Kumar, M. V. Shankar, V. Krishnan, ACS Appl. Energy Mater. 2019, 2, 5622.

[27]

A. Kumar, V. Navakoteswara Rao, A. Kumar, M. Venkatakrishnan Shankar, V. Krishnan, ChemPhotoChem 2020, 4, 427.

[28]

A. Grillo, A. Di Bartolomeo, Adv. Electron. Mater. 2021, 7, 2000979.

[29]

K. Cao, G. Gong, X. Guo, Y. He, F. C. C. Ling, W. Ge, A. M. C. Ng, Y. Li, J. Yu, Appl. Surf. Sci. 2023, 639, 158255.

[30]

F. Zhou, S. Li, D. Kang, Surf. Interfaces 2023, 36, 102622.

[31]

Y. Li, J. Wang, B. Zhou, F. Wang, Y. Miao, J. Wei, B. Zhang, K. Zhang, Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, L. J. Li, Phys. Chem. Chem. Phys. 2018, 20, 24109.

[32]

S. Chen, S. Wang, C. Wang, Z. Wang, Q. Liu, Nano Today 2022, 42, 101372.

[33]

N. J. Townsend, I. Amit, M. F. Craciun, S. Russo, 2D Mater. 2018, 5, 25023.

[34]

N. Pakhira, R. Mahato, Physica B 2023, 670, 415394.

[35]

Y. Zheng, J. Gao, C. Han, W. Chen, Cell Rep. Phys. Sci. 2021, 2, 100298.

[36]

M.-H. Zhang, C.-H. Li, J.-L. Zuo, Chem. Eng. J. 2022, 433, 133840.

[37]

X. Wang, S. Gao, J. Ma, Nanoscale 2022, 15, 1754.

[38]

W. Zhou, Y. Guo, J. Liu, F. Q. Wang, X. Li, Q. Wang, Nanoscale 2018, 10, 13767.

[39]

Y. Liu, P. Stradins, S. H. Wei, Sci. Adv. 2016, 2, e1600069.

[40]

H. Ko, H. S. Kim, M. S. Ramzan, S. Byeon, S. H. Choi, K. K. Kim, Y. H. Kim, S. M. Kim, 2D Mater. 2019, 7, 15013.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/