Occupied Outer Cationic Orbitals in Dimeric MX2-Type BaSe2 Compound Lead to Reduced Thermal Conductivity and High Thermoelectric Performance

Jie Zhang , Li Zhou , Xiaohong Xia , Yun Gao , Zhongbing Huang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12799

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12799 DOI: 10.1002/eem2.12799
RESEARCH ARTICLE

Occupied Outer Cationic Orbitals in Dimeric MX2-Type BaSe2 Compound Lead to Reduced Thermal Conductivity and High Thermoelectric Performance

Author information +
History +
PDF

Abstract

Decoupling electrical and thermal properties to enhance the figure of merit of thermoelectric materials underscores an in-depth understanding of the mechanisms that govern the transfer of charge carriers. Typically, a factor that contributes to the optimization of thermal conductivity is often found to be detrimental to the electrical transport properties. Here, we systematically investigated 26 dimeric MX2-type compounds (where M represents a metal and X represents a nonmetal element) to explore the influence of the electronic configurations of metal cations on lattice thermal transport and thermoelectric performance using first-principles calculations. A principled scheme has been identified that the filled outer orbitals of the cation lead to a significantly lower lattice thermal conductivity compared to that of the partly occupied case for MX2, due to the much weakened bonds manifested by the shallow potential well, smaller interatomic force constants, and higher atomic displacement parameters. Based on these findings, we propose two ionic compounds, BaAs and BaSe2, to realize reasonable high electrical conductivities through the structural anisotropy caused by the inserted covalent X2 dimers while still maintaining the large lattice anharmonicity. The combined superior electrical and thermal properties of BaSe2 lead to a high n-type thermoelectric ZT value of 2.3 at 500 K. This work clarifies the structural origin of the heat transport properties of dimeric MX2-type compounds and provides an insightful strategy for developing promising thermoelectric materials.

Keywords

anisotropic electrical and thermal transport / density functional theory / dimeric MX 2-type compounds / energy materials / ionic compound BaSe 2 and BaAs / simulation / thermoelectrics

Cite this article

Download citation ▾
Jie Zhang, Li Zhou, Xiaohong Xia, Yun Gao, Zhongbing Huang. Occupied Outer Cationic Orbitals in Dimeric MX2-Type BaSe2 Compound Lead to Reduced Thermal Conductivity and High Thermoelectric Performance. Energy & Environmental Materials, 2025, 8(1): e12799 DOI:10.1002/eem2.12799

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Firth, B. Zhang, A. Yang, Appl. Energy 2019, 235, 1314.

[2]

T. M. Tritt, Thermal conductivity: theory, properties, and applications, Springer, New York, USA 2011.

[3]

G. A. Slack, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton 1995, Chapter 34.

[4]

Y. Pei, H. Wang, G. J. Snyder, Adv. Mater. 2012, 24, 6125.

[5]

Y. Xiao, H. Wu, D. Wang, C. Niu, Y. Pei, Y. Zhang, I. Spanopoulos, I. T. Witting, X. Li, S. J. Pennycook, G. J. Snyder, M. G. Kanatzidis, L. Zhao, Adv. Energy Mater. 2019, 9, 1900414.

[6]

Y. Pei, Z. M. Gibbs, A. Gloskovskii, B. Balke, W. G. Zeier, G. J. Snyder, Adv. Energy Mater. 2014, 4, 1400486.

[7]

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373.

[8]

L.-D. Zhao, J. He, D. Berardan, Y. Lin, J.-F. Li, C.-W. Nan, N. Dragoe, Energ. Environ. Sci. 2014, 7, 2900.

[9]

Y. Luo, S. Cai, S. Hao, F. Pielnhofer, I. Hadar, Z.-Z. Luo, J. Xu, C. Wolverton, V. P. Dravid, A. Pfitzner, Q. Yan, M. G. Kanatzidis, Joule 2020, 4, 159.

[10]

L. Xi, J. Yang, L. Wu, J. Yang, W. Zhang, J. Mater. 2016, 2, 114.

[11]

J. N. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, G. A. Slack, Phys. Rev. Lett. 1999, 82, 779.

[12]

Z. Feng, Y. Fu, Y. Zhang, D. J. Singh, Phys. Rev. B 2020, 101, 64301.

[13]

E. S. Toberer, A. Zevalkink, G. J. Snyder, J. Mater. Chem. 2011, 21, 15843.

[14]

W. Lai, Y. Wang, D. T. Morelli, X. Lu, Adv. Funct. Mater. 2015, 25, 3648.

[15]

M. M. Koza, A. Leithe-Jasper, E. Sischka, W. Schnelle, H. Borrmann, H. Mutka, Y. Grin, Phys. Chem. Chem. Phys. 2014, 16, 27119.

[16]

M. K. Jana, K. Pal, U. V. Waghmare, K. Biswas, Angew. Chem. Int. Ed. 2016, 55, 7792.

[17]

S. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, Chem. Mater. 2006, 18, 1873.

[18]

J. Zhang, L. Song, B. B. Iversen, npj Comput. Mater. 2019, 5, 76.

[19]

B. Ge, R. Li, G. Wang, M. Zhu, C. Zhou, J. Am. Ceram. Soc. 2023, 107, 1985.

[20]

E. Guilmeau, P. Díaz-Chao, O. I. Lebedev, A. Rečnik, M. C. Schäfer, F. Delorme, F. Giovannelli, M. Košir, S. Bernik, Inorg. Chem. 2017, 56, 480.

[21]

O. Hellman, D. A. Broido, Phys. Rev. B 2014, 90, 134309.

[22]

A. Das, K. Pal, P. Acharyya, S. Das, K. Maji, K. Biswas, J. Am. Chem. Soc. 2023, 145, 1349.

[23]

P. Acharyya, K. Pal, A. Ahad, D. Sarkar, K. S. Rana, M. Dutta, A. Soni, U. V. Waghmare, K. Biswas, Adv. Funct. Mater. 2023, 33, 2304607.

[24]

D. Sarkar, K. Dolui, V. Taneja, A. Ahad, M. Dutta, S. O. Manjunatha, D. Swain, K. Biswas, Angew. Chem. Int. Ed. 2023, 62, e2023085.

[25]

W. Lin, J. He, X. Su, X. Zhang, Y. Xia, T. P. Bailey, C. C. Stoumpos, G. Tan, A. J. E. Rettie, D. Y. Chung, V. P. Dravid, C. Uher, C. Wolverton, M. G. Kanatzidis, Adv. Mater. 2021, 33, 2104908.

[26]

J. Yuan, Y. Chen, B. Liao, J. Am. Chem. Soc. 2023, 145, 18506.

[27]

J. Zhang, H. Jiang, X. Xia, Y. Gao, Z. Huang, ACS Appl. Energy Mater. 2022, 5, 15566.

[28]

J. Zhang, X. Xia, Y. Gao, Z. Huang, ACS Appl. Energy Mater. 2023, 6, 11385.

[29]

M. Hellenbrandt, Crystallogr. Rev. 2004, 10, 17.

[30]

T. Jia, J. Carrete, G. K. Madsen, Y. Zhang, S.-H. Wei, Phys. Rev. B 2022, 105, 245203.

[31]

T. Jia, X. Liu, Y. Zhang, S. Wei, Phys. Rev. B 2023, 107, 115204.

[32]

Y. Wang, J. Ren, ACS Appl. Mater. Interfaces 2021, 13, 34724.

[33]

J. Chen, J. He, D. Pan, X. Wang, N. Yang, J. Zhu, S. A. Yang, G. Zhang, Sci. China Phys. Mech. 2022, 65, 117002.

[34]

J. He, Y. Xia, W. Lin, K. Pal, Y. Zhu, M. G. Kanatzidis, C. Wolverton, Adv. Funct. Mater. 2022, 32, 2108532.

[35]

T. M. Tritt, M. A. Subramanian, MRS Bull. 2006, 31, 188.

[36]

A. N. Roth, Y. Chen, M. A. S. Adamson, E. Gi, M. Wagner, A. J. Rossini, J. Vela, ACS Nano 2022, 16, 12024.

[37]

W. Zheng, F.-S. Liu, Y.-C. Lu, Z.-T. Liu, W.-H. Liu, Q.-J. Liu, Mater. Sci. Semicond. Process. 2022, 147, 106755.

[38]

I. T. Witting, T. C. Chasapis, F. Ricci, M. Peters, N. A. Heinz, G. Hautier, G. J. Snyder, Adv. Electron. Mater. 2019, 5, 1800904.

[39]

Z. Han, Z. Gui, Y. Zhu, P. Qin, B. Zhang, W. Zhang, L. Huang, W. Liu, Research 2020, 2020, 1672051.

[40]

M. Zeeshan, C. K. Vishwakarma, B. K. Mani, Phys. Rev. Mater. 2022, 6, 85404.

[41]

W. Rahim, J. M. Skelton, D. O. Scanlon, J. Mater. Chem. A 2021, 9, 20417.

[42]

J. M. Frost, Phys. Rev. B 2017, 96, 195202.

[43]

Y.-K. Jung, I. T. Han, Y. C. Kim, A. Walsh, npj Comput. Mater. 2021, 7, 51.

[44]

K. B. Spooner, A. M. Ganose, W. W. W. Leung, J. Buckeridge, B. A. D. Williamson, R. G. Palgrave, D. O. Scanlon, Chem. Mater. 2021, 33, 7441.

[45]

K. Brlec, K. B. Spooner, J. M. Skelton, D. O. Scanlon, J. Mater. Chem. A 2022, 10, 16813.

[46]

L. H. Rodriguez, K. B. Spooner, M. Einhorn, D. O. Scanlon, J. Mater. Chem. C 2023, 11, 9124.

[47]

K. Yuan, X. Zhang, Z. Chang, D. Tang, M. Hu, J. Mater. Chem. C 2022, 10, 15822.

[48]

Y. Shi, R. Wan, Z. Zhang, Y. Lei, G. Tian, Philos. Mag. 2023, 103, 1396.

[49]

T. Jia, J. Carrete, Z. Feng, S. Guo, Y. Zhang, G. K. H. Madsen, Phys. Rev. B 2020, 102, 125204.

[50]

Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, G. Chen, Phys. Rev. B 2012, 85, 184303.

[51]

A. Suwardi, J. Cao, Y. Zhao, J. Wu, S. W. Chien, X. Y. Tan, L. Hu, X. Wang, W. Wang, D. Li, Y. Yin, W.-X. Zhou, D. V. M. Repaka, J. Chen, Y. Zheng, Q. Yan, G. Zhang, J. Xu, Mater. Today Phys. 2020, 14, 100239.

[52]

S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science 2015, 348, 109.

[53]

A. A. Olvera, N. A. Moroz, P. Sahoo, P. Ren, T. P. Bailey, A. A. Page, C. Uher, P. F. P. Poudeu, Energ. Environ. Sci. 2017, 10, 1668.

[54]

D. Wu, L. Xie, X. Xu, J. He, Adv. Funct. Mater. 2019, 29, 1806613.

[55]

C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He, L.-D. Zhao, Science 2018, 360, 778.

[56]

Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin, X. Zhang, Y. Chen, L. Chen, B. Ge, Y. Pei, Joule 2019, 3, 1276.

[57]

W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, J. Shi, Nature 2017, 549, 247.

[58]

J. Hwang, H. Kim, M.-K. Han, J. Hong, J.-H. Shim, J.-Y. Tak, Y. S. Lim, Y. Jin, J. Kim, H. Park, D.-K. Lee, J.-H. Bahk, S.-J. Kim, W. Kim, ACS Nano 2019, 13, 8347.

[59]

X. Chen, H. Wu, J. Cui, Y. Xiao, Y. Zhang, J. He, Y. Chen, J. Cao, W. Cai, S. J. Pennycook, Z. Liu, L.-D. Zhao, J. Sui, Nano Energy 2018, 52, 246.

[60]

C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z.-Z. Luo, H. Lee, B. Ge, Y.-L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Mirédin, H. Chang, J. Im, S.-P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis, I. Chung, Nat. Mater. 2021, 20, 1378.

[61]

L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science 2016, 351, 141.

[62]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[63]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[64]

P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[65]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[66]

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.

[67]

J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.

[68]

A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 2008, 78, 134106.

[69]

W. Li, J. Carrete, N. A. Katcho, N. Mingo, Comput. Phys. Commun. 2014, 185, 1747.

[70]

A. M. Ganose, J. Park, A. Faghaninia, R. Woods-Robinson, K. A. Persson, A. Jain, Nat. Commun. 2021, 12, 2222.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/