PDF
Abstract
Covalent organic frameworks (COFs) after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites. Herein, integrating carbon nanotubes (CNTs) with imine-linked covalent organic frameworks (COFs) was rationally executed by in-situ Schiff-base condensation between 1,1′-biphenyl]-3,3′,5,5′-tetracarbaldehyde and 1,4-diaminobenzene in the presence of CNTs to produce core–shell heterostructured composites (CNT@COF). Accordingly, the redox-active shell of COF nanoparticles around one-dimensional conductive CNTs synergistically creates robust three-dimensional hybrid architectures with high specific surface area, thus promoting electron transport and affording abundant active functional groups accessible for electrochemical utilization throughout the whole electrode. Remarkably, upon the full activation with a superlithiation process, the as-fabricated CNT@COF anode achieves a specific capacity of 2324 mAh g−1, which is the highest specific capacity among organic electrode materials reported so far. Meanwhile, the superior rate capability and excellent cycling stability are also obtained. The redox reaction mechanisms for the COF moiety were further revealed by Fourier-transform infrared spectroscopy in conjunction with X-ray photoelectron spectroscopy, involving the reversible redox reactions between lithium ions and C=N groups and gradual electrochemical activation of the unsaturated C=C bonds within COFs.
Keywords
heterostructured anode
/
core–shell nanostructures
/
carbon nanotubes
/
polymeric Schiff-bases
/
covalent organic frameworks
Cite this article
Download citation ▾
Nan Jiang, Mengpei Qi, Yalong Jiang, Yin Fan, Shiwei Jin, Yingkui Yang.
Superior Anodic Lithium Storage in Core–Shell Heterostructures Composed of Carbon Nanotubes and Schiff-Base Covalent Organic Frameworks.
Energy & Environmental Materials, 2024, 7(6): e12797 DOI:10.1002/eem2.12797
| [1] |
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energ. Environ. Sci. 2011, 4, 3243.
|
| [2] |
H. Adenusi, G. Chass, S. Passerini, K. Tian, G. Chen, Adv. Energy Mater. 2023, 13, 2203307.
|
| [3] |
Y. Liu, H. Shi, Z. Wu, Energ. Environ. Sci. 2023, 16, 4834.
|
| [4] |
X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M. Sailor, J. Zhang, J. Liu, Nat. Commun. 2014, 5, 4105.
|
| [5] |
S. Liang, Y. Cheng, J. Zhu, Y. Xia, P. Müller-Buschbaum, Small Methods 2020, 4, 2000218.
|
| [6] |
Y. Lu, L. Yu, X. W. Lou, Chem 2018, 4, 972.
|
| [7] |
Y. Lu, J. Chen, Nat. Rev. Chem. 2020, 4, 127.
|
| [8] |
Y. Chen, S. Zhuo, Z. Li, C. Wang, EnergyChem 2020, 2, 100030.
|
| [9] |
S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka, U. Schubert, Chem. Rev. 2016, 116, 9438.
|
| [10] |
Q. Zhang, Y. Dou, Q. He, S. Deng, Q. Huang, S. Huang, Y. Yang, Energy Environ. Mater. 2022, 5, 1037.
|
| [11] |
H. Yang, S. Liu, L. Cao, S. Jiang, H. Hou, J. Mater. Chem. A 2018, 6, 21216.
|
| [12] |
S. Renault, V. A. Oltean, C. M. Araujo, A. Grigoriev, K. Edström, D. Brandell, Chem. Mater. 2016, 28, 1920.
|
| [13] |
Z. Lei, Q. Yang, Y. Xu, S. Guo, W. Sun, H. Liu, L. Lv, Y. Zhang, Y. Wang, Nat. Commun. 2018, 9, 576.
|
| [14] |
Q. Xu, S. Tao, Q. Jiang, D. Jiang, J. Am. Chem. Soc. 2018, 140, 7429.
|
| [15] |
J. Yu, S. Li, Z. Si, B. Gao, X. Lv, H. Wang, Batter. Supercaps 2023, 6, e202200429.
|
| [16] |
M. Bhosale, S. Chae, J. Kim, J. Choi, J. Mater. Chem. A 2018, 6, 19885.
|
| [17] |
Q. Chen, H. Kang, Y. Gao, L. Zhang, R. Wang, S. Zhang, T. Zhou, H. Li, J. Mao, C. Zhang, Z. Guo, ACS Appl. Mater. Interfaces 2023.
|
| [18] |
T. Sun, J. Xie, W. Guo, D. Li, Q. Zhang, Adv. Energy Mater. 2020, 10, 1904199.
|
| [19] |
D. Zhu, G. Xu, M. Barnes, Y. Li, C. Tseng, Z. Zhang, J. Zhang, Y. Zhu, S. Khalil, M. Rahman, R. Verduzco, P. Ajayan, Adv. Funct. Mater. 2021, 31, 2100505.
|
| [20] |
X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871.
|
| [21] |
J. Xu, Y. Xu, C. Lai, T. Xia, B. Zhang, X. Zhou, Sci. China Chem. 2021, 64, 1267.
|
| [22] |
H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue, J. Gao, Y. Li, C. Huang, Y. Yi, H. Liu, Y. Li, ACS Appl. Mater. Interfaces 2016, 8, 5366.
|
| [23] |
Y. Su, Y. Liu, P. Liu, D. Wu, X. Zhuang, F. Zhang, X. Feng, Angew. Chem. Int. Ed. 2015, 54, 1812.
|
| [24] |
J. Zhu, X. Zhuang, J. Yang, X. Feng, S. Hirano, J. Mater. Chem. A 2017, 5, 16732.
|
| [25] |
Q. Zhang, Y. He, G. Lin, X. Ma, Z. Xiao, D. Shi, Y. Yang, J. Mater. Chem. A 2021, 9, 10652.
|
| [26] |
Z. Xiao, G. Xiang, Q. Zhang, Y. Wang, Y. Yang, Energy Environ. Mater. 2023, 6, e12399.
|
| [27] |
L. Lian, K. Li, L. Ren, D. Han, X. Lv, H. Wang, Colloid. Surfaces A 2023, 657, 130496.
|
| [28] |
Z. Lei, X. Chen, W. Sun, Y. Zhang, Y. Wang, Adv. Energy Mater. 2019, 9, 1801010.
|
| [29] |
Y. Wang, K. Chen, Y. Zhu, J. Wang, N. Jiang, Y. Yang, Energy Environ. Mater. 2023, 6, e12564.
|
| [30] |
F. Xu, S. Jin, H. Zhong, D. Wu, X. Yang, X. Chen, H. Wei, R. Fu, D. Jiang, Sci. Rep. 2015, 5, 8225.
|
| [31] |
S. Xu, G. Wang, B. Biswal, M. Addicoat, S. Paasch, W. Sheng, X. Zhuang, E. Brunner, T. Heine, R. Berger, X. Feng, Angew. Chem. Int. Ed. 2019, 58, 849.
|
| [32] |
Q. Zhang, Y. He, Y. Wang, J. Lu, N. Jiang, Y. Yang, Adv. Funct. Mater. 2023, 33, 2211590.
|
| [33] |
Y. Wang, Y. Zhu, Z. Chen, X. Yang, R. Zhang, H. Wang, Y. Yang, Angew. Chem. Int. Ed. 2024, 63, e202401253.
|
| [34] |
Q. Liu, Z. Xiao, X. Cui, S. Deng, Q. He, Q. Zhang, Z. Lin, Y. Yang, J. Mater. Chem. A 2021, 9, 6962.
|
| [35] |
Y. Tian, S. Xu, R. Liang, C. Qian, G. Jiang, X. Zhao, CrstEngComm 2017, 19, 4877.
|
| [36] |
Z. Man, P. Li, D. Zhou, R. Zang, S. Wang, P. Li, S. Liu, X. Li, Y. Wu, X. Liang, G. Wang, J. Mater. Chem. A 2019, 7, 2368.
|
| [37] |
P. Hu, H. Wang, Y. Yang, J. Yang, J. Lin, L. Guo, Adv. Mater. 2016, 28, 3486.
|
| [38] |
X. Li, W. Liu, Y. Wang, L. Lv, H. Feng, W. Huang, Y. Sun, W. Xiong, H. Zheng, Chem. Eng. J. 2023, 473, 145310.
|
| [39] |
J. Wang, H. Yao, C. Du, S. Guan, J. Power Sources 2021, 482, 228931.
|
| [40] |
X. Chen, Y. Li, L. Wang, Y. Xu, A. Nie, Q. Li, F. Wu, W. Sun, X. Zhang, R. Vajtai, P. Ajayan, L. Chen, Y. Wang, Adv. Mater. 2019, 31, 1901640.
|
| [41] |
T. Schon, S. An, A. Tilley, D. Seferos, ACS Appl. Mater. Interfaces 2019, 11, 1739.
|
| [42] |
Z. Zhang, Y. Zhou, P. Chen, S. Zeng, W. Nie, Y. Xu, ACS Appl. Energy Mater. 2021, 4, 12882.
|
| [43] |
C. Guo, Y. Zhang, M. Yao, Y. Cao, Q. Feng, Y. Wang, ACS Appl. Mater. Interfaces 2022, 14, 29974.
|
| [44] |
L. Zhao, X. Tang, L. Lv, S. Chen, W. Sun, Y. Wang, ChemSusChem 2021, 14, 3283.
|
| [45] |
O. Buyukcakir, J. Ryu, S. H. Joo, J. Kang, R. Yuksel, J. Lee, Y. Jiang, S. Choi, S. Lee, S. Kwak, S. Park, R. Ruoff, Adv. Funct. Mater. 2020, 30, 2003761.
|
| [46] |
H. Zhao, D. Luo, H. Xu, W. He, B. Ding, H. Dou, X. Zhang, J. Mater. Sci. 2022, 57, 9980.
|
RIGHTS & PERMISSIONS
2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.