Enhanced Passivation Effect of Tunnel Oxide Prepared by Ozone-Gas Oxidation (OGO) for n-Type Polysilicon Passivated Contact (TOPCon) Solar Cells

Lei Yang , Yali Ou , Xiang Lv , Na Lin , Yuheng Zeng , Zechen Hu , Shuai Yuan , Jichun Ye , Xuegong Yu , Deren Yang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12795

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12795 DOI: 10.1002/eem2.12795
RESEARCH ARTICLE

Enhanced Passivation Effect of Tunnel Oxide Prepared by Ozone-Gas Oxidation (OGO) for n-Type Polysilicon Passivated Contact (TOPCon) Solar Cells

Author information +
History +
PDF

Abstract

Nowadays, a stack of heavily doped polysilicon (poly-Si) and tunnel oxide (SiOx) is widely employed to improve the passivation performance in n-type tunnel oxide passivated contact (TOPCon) silicon solar cells. In this case, it is critical to develop an in-line advanced fabrication process capable of producing high-quality tunnel SiOx. Herein, an in-line ozone-gas oxidation (OGO) process to prepare the tunnel SiOx is proposed to be applied in n-type TOPCon solar cell fabrication, which has obtained better performance compared with previously reported in-line plasma-assisted N2O oxidation (PANO) process. In order to explore the underlying mechanism, the electrical properties of the OGO and PANO tunnel SiOx are analyzed by deep-level transient spectroscopy technology. Notably, continuous interface states in the band gap are detected for OGO tunnel SiOx, with the interface state densities (Dit) of 1.2 × 1012–3.6 × 1012 cm-2 eV-1 distributed in Ev + (0.15–0.40) eV, which is significantly lower than PANO tunnel SiOx. Furthermore, X-ray photoelectron spectroscopy analysis indicate that the percentage of SiO2 (Si4+) in OGO tunnel SiOx is higher than which in PANO tunnel SiOx. Therefore, we ascribe the lower Dit to the good inhibitory effects on the formation of low-valent silicon oxides during the OGO process. In a nutshell, OGO tunnel SiOx has a great potential to be applied in n-type TOPCon silicon solar cell, which may be available for global photovoltaics industry.

Keywords

interface states / ozone-gas oxidation / silicon solar cells / tunnel oxide passivation contact (TOPCon)

Cite this article

Download citation ▾
Lei Yang, Yali Ou, Xiang Lv, Na Lin, Yuheng Zeng, Zechen Hu, Shuai Yuan, Jichun Ye, Xuegong Yu, Deren Yang. Enhanced Passivation Effect of Tunnel Oxide Prepared by Ozone-Gas Oxidation (OGO) for n-Type Polysilicon Passivated Contact (TOPCon) Solar Cells. Energy & Environmental Materials, 2025, 8(1): e12795 DOI:10.1002/eem2.12795

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Jeon, J. Kang, G. Shim, S. Ahn, N. Balaji, C. Park, Y. J. Lee, J. Yi, Vacuum 2017, 141, 152.

[2]

A. Assar, F. Martinho, J. Larsen, N. Saini, D. Shearer, M. V. Moro, F. Stulen, S. Grini, S. Engberg, E. Stamate, J. Schou, L. Vines, S. Canulescu, C. Platzer-Bjorkman, O. Hansen, ACS Appl. Mater. Interfaces 2022, 14, 14342.

[3]

K. F. Qiu, M. Pomaska, S. H. Li, A. Lambertz, W. Y. Duan, A. Gad, M. Geitner, J. Brugger, Z. C. Liang, H. Shen, F. Finger, U. Rau, K. N. Ding, ACS Appl. Mater. Interfaces 2020, 12, 29986.

[4]

J. K. Zhou, G. C. Wang, X. L. Su, H. Z. Ren, Y. H. Zeng, W. Liu, B. K. Zhang, X. D. Zhang, Y. Zhao, G. F. Hou, Adv. Energy Mater. 2023, 13, 2300201.

[5]

L. H. Song, Z. C. Hu, D. H. Lin, D. Yang, X. G. Yu, J. Phys. D Appl. Phys. 2022, 55, 453002.

[6]

F. Feldmann, M. Bivour, C. Reichel, M. Hermle, S. W. Glunz, Sol. Energy Mater. Sol. Cells 2014, 120, 270.

[7]

S. Ma, B. Liao, F. Y. Qiao, D. Ding, C. Gao, Z. Li, R. Tong, X. Y. Kong, W. Z. Shen, Sol. Energy Mater. Sol. Cells 2023, 257, 112396.

[8]

M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, Jpn. J. Appl. Phys. 1992, 31, 3518.

[9]

L. L. Wen, L. Zhao, G. H. Wang, X. J. Jia, X. H. Xu, S. Y. Qu, X. T. Li, X. Y. Zhang, K. Xin, J. H. Xiao, W. J. Wang, Sol. Energy Mater. Sol. Cells 2023, 258, 112429.

[10]

A. G. Aberle, S. Glunz, W. Warta, J. Appl. Phys. 1992, 71, 4422.

[11]

L. E. Black, K. R. McIntosh, IEEE J. Photovolt. 2013, 3, 936.

[12]

D. W. Kim, J. W. Song, H. S. Jin, B. Yoo, J. H. Lee, T. J. Park, ACS Appl. Mater. Interfaces 2019, 11, 25140.

[13]

X. Gu, X. G. Yu, J. L. Xu, R. X. Fan, D. Yang, Prog. Photovoltaics 2013, 21, 456.

[14]

X. Gu, X. G. Yu, D. Yang, Scr. Mater. 2012, 66, 394.

[15]

A. Moldovan, F. Feldmann, M. Zimmer, J. Rentsch, J. Benick, M. Hermle, Sol. Energy Mater. Sol. Cells 2015, 142, 123.

[16]

J. K. Zhou, X. L. Su, Q. Huang, B. K. Zhang, J. Yang, Y. Zhao, G. F. Hou, J. Mater. Chem. A 2022, 10, 20147.

[17]

Z. C. Hu, L. H. Song, D. H. Lin, Q. Y. He, X. J. Zhang, Y. M. Cai, L. X. Fang, S. He, W. C. Hsu, X. G. Yu, D. Yang, Phys. Status Solidi A 2022, 219, 2100614.

[18]

Y. L. Wang, Z. X. Lan, F. Xu, L. Zhao, J. Xu, J. Chen, R. L. Liu, Z. R. Du, H. W. Du, Z. Q. Ma, Acs Appl. Electron. Mater. 2022, 4, 3947.

[19]

R. Chen, M. Wright, D. Chen, J. Yang, P. T. Zheng, X. Y. Zhang, S. Wenham, A. Ciesla, Prog. Photovoltaics 2021, 29, 1213.

[20]

D. H. Lin, Z. C. Hu, Q. Y. He, D. Yang, L. H. Song, X. G. Yu, Sol. Energy Mater. Sol. Cells 2021, 226, 111085.

[21]

T. J. Zhang, X. Y. Qu, Y. G. Guo, D. W. Liu, X. Wu, J. Q. Gao, T. Lin, SILICON 2023, 15, 1659.

[22]

T. Gao, Q. Yang, X. Q. Guo, Y. Q. Huang, Z. Zhang, Z. X. Wang, M. D. Liao, C. H. Shou, Y. H. Zeng, B. J. Yan, G. F. Hou, X. D. Zhang, Y. Zhao, J. C. Ye, Sol. Energy Mater. Sol. Cells 2019, 200, 109929.

[23]

J. C. Zhou, B. W. Lv, H. L. Liang, Z. X. Wen, Sol. Energy 2023, 253, 462.

[24]

S. Mack, M. Lenes, J. M. Luchies, A. Wolf, Phys. Status Solidi RRL 2019, 13, 201900064.

[25]

H. Y. Xing, Z. K. Liu, Z. H. Yang, M. D. Liao, Q. Q. Wu, N. Lin, W. Liu, C. F. Ding, Y. H. Zeng, B. J. Yan, J. C. Ye, Sol. Energy Mater. Sol. Cells 2023, 257, 112354.

[26]

J. H. Baek, M. J. Jeong, W. G. Hu, H. S. Chang, Appl. Surf. Sci. 2019, 489, 330.

[27]

W. H. Chen, J. Stuckelberger, W. J. Wang, S. P. Phang, D. Kang, C. Samundsett, D. MacDonald, A. Cuevas, L. Zhou, Y. M. Wan, D. Yan, IEEE J. Photovolt. 2020, 10, 1239.

[28]

T. S. Yadav, A. K. Sharma, A. Kottantharayil, P. K. Basu, Sol. Energy Mater. Sol. Cells 2019, 201, 110077.

[29]

B. Stegemann, K. M. Gad, P. Balamou, D. Sixtensson, D. Vossing, M. Kasemann, H. Angermann, Appl. Surf. Sci. 2017, 395, 78.

[30]

N. Lin, Z. Yang, H. Du, Z. Ding, Z. Liu, H. Xing, M. Xiao, Y. Ou, W. Liu, M. Liao, B. Yan, S. Huang, Y. Zeng, J. Ye, Sol. Energy 2023, 259, 348.

[31]

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Herm, S. W. Glunz, Sol. Energy Mater. Sol. Cells 2014, 131, 46.

[32]

H. Angermann, Appl. Surf. Sci. 2014, 312, 3.

[33]

P. Balamou, H. Angermann, B. Stegemann, IEEE Phot. Spec. Conf. New Orleans, LA. June 2015.

[34]

D. Deligiannis, S. Alivizatos, A. Ingenito, D. Zhang, M. van Sebille, R. A. C. M. M. v. Swaaij, M. Zeman, Energy Procedia 2014, 55, 197.

[35]

S. Bordihn, P. Engelhart, V. Mertens, G. Kesser, D. Köhn, G. Dingemans, M. M. Mandoc, J. W. Müller, W. M. M. Kessels, Energy Procedia 2011, 8, 654.

[36]

N. C. Mandal, S. Biswas, S. Acharya, T. Panda, S. Sadhukhan, J. R. Sharma, A. Nandi, S. Bose, A. Kole, G. Das, S. Maity, P. Chaudhuri, H. Saha, Mater. Sci. Semicond. Process. 2020, 119, 105163.

[37]

Y. Q. Huang, M. D. Liao, Z. X. Wang, X. Q. Guo, C. S. Jiang, Q. Yang, Z. Z. Yuan, D. D. Huang, J. Yang, X. Y. Zhang, Q. Wang, H. Jin, M. Al-Jassim, C. H. Shou, Y. H. Zeng, B. J. Yan, J. C. Ye, Sol. Energy Mater. Sol. Cells 2020, 208, 110389.

[38]

Z. Zhang, Y. H. Zeng, C. S. Jiang, Y. Q. Huang, M. D. Liao, H. Tong, M. Al-Jassim, P. Q. Gao, C. H. Shou, X. L. Zhou, B. J. Yan, J. C. Ye, Sol. Energy Mater. Sol. Cells 2018, 187, 113.

[39]

D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc, Hoboken, NJ, USA 2006.

[40]

D. V. Lang, J. Appl. Phys. 1974, 45, 3023.

[41]

A. V. P Coelho, M. C. Adam, H. Boudinov, J. Phys. D Appl. Phys. 2011, 44, 305303.

[42]

D. Lei, X. G. Yu, L. H. Song, X. Gu, G. H. Li, D. Yang, Appl. Phys. Lett. 2011, 99, 52103.

[43]

L. H. Song, M. Xie, X. G. Yu, D. Yang, Appl. Phys. Lett. 2017, 111, 152103.

[44]

E. Simoen, D. Visalli, M. Van Hove, M. Leys, P. Favia, H. Bender, G. Borghs, P. D. N. Ahn, A. Stesmans, Phys. Status Solidi A 2012, 209, 1851.

[45]

L. Yang, Y. X. Fan, X. Lv, H. W. Pang, S. Yuan, X. G. Yu, D. S. Li, D. Yang, IEEE T. Electron Dev. 2023, 70, 5757.

[46]

C. R. Helms, E. H. Poindexter, Rep. Prog. Phys. 1994, 57, 791.

[47]

P. Swift, Surf. Interface Anal. 1982, 4, 47.

[48]

A. Moldovan, F. Feldmann, G. Krugel, M. Zimmer, J. Rentsch, M. Hermle, A. Roth-Fölsch, K. Kaufmann, C. Hagendorf, Energy Procedia 2014, 55, 834.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/