Design Principles for High-Performance Meta-Polybenzimidazole Membranes for Vanadium Redox Flow Batteries

Jacobus C. Duburg , Jonathan Avaro , Leonard Krupnik , Bruno F.B. Silva , Antonia Neels , Thomas J. Schmidt , Lorenz Gubler

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12793

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12793 DOI: 10.1002/eem2.12793
RESEARCH ARTICLE

Design Principles for High-Performance Meta-Polybenzimidazole Membranes for Vanadium Redox Flow Batteries

Author information +
History +
PDF

Abstract

The all-vanadium redox flow battery (VRFB) plays an important role in the energy transition toward renewable technologies by providing grid-scale energy storage. Their deployment, however, is limited by the lack of membranes that provide both a high energy efficiency and capacity retention. Typically, the improvement of the battery’s energy efficiency comes at the cost of its capacity retention. Herein, novel N-alkylated and N-benzylated meta-polybenzimidazole (m-PBI) membranes are used to understand the molecular requirements of the polymer electrolyte in a vanadium redox flow battery, providing an important toolbox for future research toward next-generation membrane materials in energy storage devices. The addition of an ethyl side chain to the m-PBI backbone increases its affinity toward the acidic electrolyte, thereby increasing its ionic conductivity and the corresponding energy efficiency of the VRFB cell from 70% to 78% at a current density of 200 mA cm-2. In addition, cells equipped with ethylated m-PBI showed better capacity retention than their pristine counterpart, respectively 91% versus 87%, over 200 cycles at 200 mA cm-2. The outstanding VRFB cycling performance, together with the low-cost and fluorine-free chemistry of the N-alkylated m-PBI polymer, makes this material a promising membrane to be used in next-generation VRFB systems.

Keywords

design principles / energy storage devices / membranes / polybenzimidazole / vanadium redox flow batteries

Cite this article

Download citation ▾
Jacobus C. Duburg, Jonathan Avaro, Leonard Krupnik, Bruno F.B. Silva, Antonia Neels, Thomas J. Schmidt, Lorenz Gubler. Design Principles for High-Performance Meta-Polybenzimidazole Membranes for Vanadium Redox Flow Batteries. Energy & Environmental Materials, 2025, 8(1): e12793 DOI:10.1002/eem2.12793

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. R. Chalamala, T. Soundappan, G. R. Fisher, M. R. Anstey, V. V. Viswanathan, M. L. Perry, Proc. IEEE 2014, 102, 976.

[2]

M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, M. Saleem, J. Electrochem. Soc. 2011, 158, R55.

[3]

M. C. Argyrou, P. Christodoulides, S. A. Kalogirou, Renew. Sust. Energ. Rev. 2018, 94, 804.

[4]

L. F. Arenas, F. C. Walsh, C. P. de León, Flow Batteries (Eds: C. Roth, J. Noack, M. Skyllas-Kazacos), Wiley-VCH, Weinheim, Germany 2023, Ch. 4.

[5]

D. G. Kwabi, Y. Ji, M. J. Aziz, Chem. Rev. 2020, 120, 6467.

[6]

S. Gentil, D. Reynard, H. H. Girault, Curr. Opin. Electrochem. 2020, 21, 7.

[7]

C. Sun, H. Zhang, ChemSusChem 2022, 15, e202101798.

[8]

Y. A. Hugo, W. Kout, G. Dalessi, A. Forner-Cuenca, Z. Borneman, K. Nijmeijer, PRO 2020, 8, 1492.

[9]

J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem. Int. Ed. 2015, 54, 9776.

[10]

Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang, T. M. Lim, A. Ukil, J. Zhao, Appl. Energy 2019, 238, 202.

[11]

G. Kear, A. A. Shah, F. C. Walsh, Int. J. Energy Res. 2012, 36, 1105.

[12]

H. Zhang, W. Lu, X. Li, Electrochem. Energy Rev. 2019, 2, 492.

[13]

B. Bauer, T. Klicpera, K. Reinwald, M. Schuster, Ion Exchange Membranes for Energy Applications (EMEA) Workshop. 2018.

[14]

C. Minke, U. Kunz, T. Turek, J. Power Sources 2017, 361, 105.

[15]

Y. Chen, P. Xiong, S. Xiao, Y. Zhu, S. Peng, G. He, Energy Storage Mater. 2022, 45, 595.

[16]

F. J. Oldenburg, T. J. Schmidt, L. Gubler, J. Power Sources 2017, 368, 68.

[17]

F. J. Oldenburg, E. Nilsson, T. J. Schmidt, L. Gubler, ChemSusChem 2019, 12, 2620.

[18]

I. S. Chae, T. Luo, G. H. Moon, W. Ogieglo, Y. S. Kang, M. Wessling, Adv. Energy Mater. 2016, 6, 1600517.

[19]

C. Noh, M. Jung, D. Henkensmeier, S. W. Nam, Y. Kwon, ACS Appl. Mater. Interfaces 2017, 9, 36799.

[20]

S. Peng, X. Yan, X. Wu, D. Zhang, Y. Luo, L. Su, G. He, RSC Adv. 1852, 2017, 7.

[21]

Y. H. Wan, J. Sun, H. R. Jiang, X. Z. Fan, T. S. Zhao, J. Power Sources 2021, 489, 229502.

[22]

D. Aili, D. Henkensmeier, S. Martin, B. Singh, Y. Hu, J. O. Jensen, L. N. Cleemann, Q. Li, Electrochem. Energy Rev. 2020, 3, 793.

[23]

J. Mader, L. Xiao, T. J. Schmidt, B. C. Benicewicz, in Fuel Cells II (Ed: G. G. Scherer), Springer Berlin Heidelberg, Berlin, Heidelberg 2008, p. 63.

[24]

A. T. Pingitore, M. Molleo, T. J. Schmidt, B. C. Benicewicz, in Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, 2nd ed. (Eds: T. E. Lipman, A. Z. Weber), Springer New York, New York, NY 2019, p. 477.

[25]

Z. Yuan, Y. Duan, H. Zhang, X. Li, H. Zhang, I. Vankelecom, Energy Environ. Sci. 2016, 9, 441.

[26]

W. Lee, B. W. Kwon, M. Jung, D. Serhiichuk, D. Henkensmeier, Y. Kwon, J. Power Sources 2019, 439, 227079.

[27]

C. Noh, D. Serhiichuk, N. Malikah, Y. Kwon, D. Henkensmeier, Chem. Eng. J. 2021, 407, 126574.

[28]

D. Aili, J. Yang, K. Jankova, D. Henkensmeier, Q. Li, J. Mater. Chem. A 2020, 8, 12854.

[29]

Q. Dai, F. Xing, X. Liu, D. Shi, C. Deng, Z. Zhao, X. Li, Energy Environ. Sci. 2022, 15, 1594.

[30]

S. C. Kumbharkar, K. Li, J. Membr. Sci. 2012, 415, 793.

[31]

M. Mara Ikhsan, S. Abbas, X. H. Do, S.-Y. Choi, K. Azizi, H. A. Hjuler, J. H. Jang, H. Y. Ha, D. Henkensmeier, Chem. Eng. J. 2022, 435, 134902.

[32]

L. Wang, A. T. Pingitore, W. Xie, Z. Yang, M. L. Perry, B. C. Benicewicz, J. Electrochem. Soc. 2019, 166, A1449.

[33]

L. Gubler, D. Vonlanthen, A. Schneider, F. J. Oldenburg, J. Electrochem. Soc. 2020, 167, 100502.

[34]

J. C. Duburg, K. Azizi, S. Primdahl, H. A. Hjuler, E. Zanzola, T. J. Schmidt, L. Gubler, Molecules 2021, 26, 1679.

[35]

P. Xiong, L. Zhang, Y. Chen, S. Peng, G. Yu, Angew. Chem. Int. Ed. 2021, 60, 24770.

[36]

S. Peng, X. Wu, X. Yan, L. Gao, Y. Zhu, D. Zhang, J. Li, Q. Wang, G. He, J. Mater. Chem. A 2018, 6, 3895.

[37]

B. Pang, X. Wu, Y. guo, M. Yang, R. Du, W. Chen, X. Yan, F. Cui, G. He, J. Membr. Sci. 2023, 670, 121351.

[38]

A. G. Wright, J. Fan, B. Britton, T. Weissbach, H.-F. Lee, E. A. Kitching, T. J. Peckham, S. Holdcroft, Energy Environ. Sci. 2016, 9, 2130.

[39]

X. Yan, Z. Dong, M. Di, L. Hu, C. Zhang, Y. Pan, N. Zhang, X. Jiang, X. Wu, J. Wang, G. He, J. Membr. Sci. 2020, 596, 117616.

[40]

J.-K. Jang, S.-W. Jo, J. W. Jeon, B. G. Kim, S. J. Yoon, D. M. Yu, Y. T. Hong, H.-T. Kim, T.-H. Kim, ACS Appl. Energy Mater. 2021, 4, 4672.

[41]

K. D. Kreuer, J. Membr. Sci. 2001, 185, 29.

[42]

X. L. Zhou, T. S. Zhao, L. An, L. Wei, C. Zhang, Electrochim. Acta 2015, 153, 492.

[43]

B. Pang, Q. Zhang, X. Yan, X. Wang, W. Chen, R. Du, X. Wu, M. Guo, G. He, F. Cui, J. Power Sources 2021, 506, 230203.

[44]

R. Darling, K. Gallagher, W. Xie, L. Su, F. Brushett, J. Electrochem. Soc. 2016, 163, A5029.

[45]

K. R. Hinkle, C. J. Jameson, S. Murad, J. Phys. Chem. C 2014, 118, 23803.

[46]

Q. Luo, L. Li, W. Wang, Z. Nie, X. Wei, B. Li, B. Chen, Z. Yang, V. Sprenkle, ChemSusChem 2013, 6, 268.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/