Tailoring Electrode–Electrolyte Interface Using an Electron-Deficient Borate-Based Additive in MgTFSI2-MgCl2/DME Electrolyte for Rechargeable Magnesium Batteries

Haiyan Fan , Xinxin Zhang , Jianhua Xiao , Wenjie Chen , Qiyuan Lin , Zi Shyun Ng , Yitao Lin , Yi Su , Ludi Pan , Yipeng Su , Shuaiyang Ren , Haowen Liu , Xuanzhang Li , Yuegang Zhang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12792

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12792 DOI: 10.1002/eem2.12792
RESEARCH ARTICLE

Tailoring Electrode–Electrolyte Interface Using an Electron-Deficient Borate-Based Additive in MgTFSI2-MgCl2/DME Electrolyte for Rechargeable Magnesium Batteries

Author information +
History +
PDF

Abstract

Rechargeable magnesium metal batteries need an electrolyte that forms a stable and ionically conductive solid electrolyte interphase (SEI) on the anodes. Here, we used molecular dynamic simulation, density functional theory calculation, and X-ray photoelectron spectroscopy analysis to investigate the solvation structures and SEI compositions in electrolytes consisting of dual-salts, magnesium bis(trifluoromethanesulfonyl)imide (MgTFSI2), and MgCl2, with different additives in 1,2-dimethoxyethane (DME) solvent. We found that the formed [Mg3(µ-Cl)4(DME)mTFSI2] (m = 3, 5) inner-shell solvation clusters in MgTFSI2-MgCl2/DME electrolyte could easily decompose and form a MgO- and MgF2-rich SEI. Such electron-rich inorganic species in the SEI, especially MgF2, turned out to be detrimental for Mg plating/stripping. To reduce the MgF2 and MgO contents in SEI, we introduce an electron-deficient tri(2,2,2-trifluoroethyl) borate (TFEB) additive in the electrolyte. Mg//Mg cells using the MgTFSI2-MgCl2/DME-TFEB electrolyte could cycle stably for over 400 h with a small polarization voltage of ∼150 mV. Even with the presence of 800 ppm H2O, the electrolyte with TFEB additive could still preserve its good electrochemical performance. The optimized electrolyte also enabled stable cycling and high-rate capability for Mg//Mo6S8 and Mg//CuS full cells, showing great potential for future applications.

Keywords

electrolyte additives / interfacial chemistry / magnesium metal batteries / solvation structure

Cite this article

Download citation ▾
Haiyan Fan, Xinxin Zhang, Jianhua Xiao, Wenjie Chen, Qiyuan Lin, Zi Shyun Ng, Yitao Lin, Yi Su, Ludi Pan, Yipeng Su, Shuaiyang Ren, Haowen Liu, Xuanzhang Li, Yuegang Zhang. Tailoring Electrode–Electrolyte Interface Using an Electron-Deficient Borate-Based Additive in MgTFSI2-MgCl2/DME Electrolyte for Rechargeable Magnesium Batteries. Energy & Environmental Materials, 2024, 7(6): e12792 DOI:10.1002/eem2.12792

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Joule 2019, 3, 27.

[2]

J. Muldoon, C. B. Bucur, A. G. Oliver, T. Sugimoto, M. Matsui, H. S. Kim, G. D. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 2012, 5, 5941.

[3]

Y. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 2020, 5, 646.

[4]

S. Hou, X. Ji, K. Gaskell, L. Wang, P. F. Wang, J. Xu, R. Sun, O. Borodin, C. Wang, Science 2021, 374, 172.

[5]

Y. Sun, F. Ai, Y.-C. Lu, Small 2022, 18, 2200009.

[6]

S. B. Son, T. Gao, S. P. Harvey, K. X. Steirer, A. Stokes, A. Norman, C. Wang, A. Cresce, K. Xu, C. Ban, Nat. Chem. 2018, 10, 532.

[7]

J. Zhang, X. Guan, R. Lv, D. Wang, P. Liu, J. Luo, A. Dong, Energy Storage Mater. 2019, 26, 408.

[8]

R. Li, Q. Liu, R. Zhang, Y. Li, Y. Ma, H. Huo, Y. Gao, P. Zuo, J. Wang, G. Yin, Energy Storage Mater. 2022, 50, 380.

[9]

H. Park, H.-K. Lim, S. H. Oh, J. Park, H.-D. Lim, K. Kang, ACS Energy Lett. 2020, 5, 3733.

[10]

Y. Zhang, J. Li, W. Zhao, H. Dou, X. Zhao, Y. Liu, B. Zhang, X. Yang, Adv. Mater. 2022, 34, 2108114.

[11]

X. Li, T. Gao, F. Han, Z. Ma, X. Fan, S. Hou, N. Eidson, W. Li, C. Wang, Adv. Energy Mater. 2017, 8, 1701728.

[12]

Y. Zhao, A. Du, S. Dong, F. Jiang, Z. Guo, X. Ge, X. Qu, X. Zhou, G. Cui, ACS Energy Lett. 2021, 6, 2594.

[13]

N. N. Rajput, X. Qu, N. Sa, A. K. Burrell, K. A. Persson, J. Am. Chem. Soc. 2015, 137, 3411.

[14]

S. Y. Ha, Y. W. Lee, S. W. Woo, B. Koo, J.-S. Kim, J. Cho, K. T. Lee, N. S. Choi, ACS Appl. Mater. Interfaces 2014, 6, 4063.

[15]

W. Zhao, Z. Pan, Y. Zhang, Y. Liu, H. Dou, Y. Shi, Z. Zuo, B. Zhang, J. Chen, X. Zhao, X. Yang, Angew. Chem. Int. Ed. 2022, 134, e202205187.

[16]

I. Shterenberg, M. Salama, H. D. Yoo, Y. Gofer, J.-B. Park, Y.-K. Sun, D. Aurbach, J. Electrochem. Soc. 2015, 162, A7118.

[17]

X. C. Hu, Z. Z. Shen, J. Wan, Y. X. Song, B. Liu, H. J. Yan, R. Wen, L. J. Wan, Nano Energy 2020, 78, 105338.

[18]

Y. Sun, Q. Zou, W. Wang, Y. C. Lu, ACS Energy Lett. 2021, 6, 3607.

[19]

Y. Li, X. Zhou, J. Hu, Y. Zheng, M. Huang, K. Guo, C. Li, Energy Storage Mater. 2021.

[20]

X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, Nat. Energy 2019, 4, 882.

[21]

J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing, G. Cai, S. Yu, H. Zhou, T. A. Pascal, Z. Chen, P. Liu, Nat. Energy 2021, 6, 303.

[22]

T. Li, X. Q. Zhang, N. Yao, Y. X. Yao, L. P. Hou, X. Chen, M. Y. Zhou, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 22683.

[23]

J. F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao, Y. X. Yao, C. Yan, J. Xie, J. Q. Huang, Angew. Chem. Int. Ed. 2021, 60, 11442.

[24]

D. Wu, J. He, J. Liu, M. Wu, S. Qi, H. Wang, J. Huang, F. Li, D. Tang, J. Ma, Adv. Energy Mater. 2022, 12, 2200337.

[25]

X. Cao, P. Gao, X. Ren, L. Zou, M. H. Engelhard, B. E. Matthews, J. Hu, C. Niu, D. Liu, B. W. Arey, C. Wang, J. Xiao, J. Liu, W. Xu, J. G. Zhang, Proc. Natl Acad. Sci. USA 2021, 118, e2020357118.

[26]

Y. Wang, Y. Sun, D. Zhang, M. Pan, Y. Chen, S. Chen, S. Zhang, Y. Zhao, J. Wang, Y. NuLi, Energy Storage Mater. 2024, 65, 103152.

[27]

C. Chen, J. Chen, S. Tan, X. Huang, Y. Du, B. Shang, B. Qu, G. Huang, X. Zhou, J. Wang, L. Li, F. Pan, Energy Storage Mater. 2023, 59, 102792.

[28]

Y. L. Ma, Y. Zhou, C. Y. Du, P. J. Zuo, X. Q. Cheng, L. L. Han, D. Nordlund, Y. Z. Gao, G. P. Yin, H. L. L. Xin, M. M. Doeff, F. Lin, G. Y. Chen, Chem. Mater. 2017, 29, 2141.

[29]

Y. Yu, G. Huang, J.-Z. Wang, K. Li, J.-L. Ma, X.-B. Zhang, Adv. Mater. 2020, 32, 2004157.

[30]

C. Wu, H. Huang, W. Lu, Z. Wei, X. Ni, F. Sun, P. Qing, Z. Liu, J. Ma, W. Wei, L. Chen, C. Yan, L. Mai, Adv. Sci. 2020, 7, 1902643.

[31]

Y. Chen, J. Li, Z. Lei, Y. Huo, L. Yang, S. Zeng, H. Ding, Y. Qin, Y. Jie, F. Huang, Q. Li, J. Zhu, R. Cao, G. Zhang, S. Jiao, D. Xu, Adv. Energy Mater. 2020, 10, 1903401.

[32]

Z. Wang, S. Rafai, C. Qiao, J. Jia, Y. Zhu, X. Ma, C. Cao, ACS Appl. Mater. Interfaces 2019, 11, 7046.

[33]

J. Li, M. Rao, S. Aloni, L. Wang, E. Cairns, Y. Zhang, Energy Environ. Sci. 2011, 4, 5053.

[34]

Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, S. Yang, W. Duan, Y. Ye, J. Guo, Y. Zhang, Nano Lett. 2014, 14, 4821.

[35]

H. Dou, X. Zhao, Y. Zhang, W. Zhao, Y. Yan, Z.-F. Ma, X. Wang, X. Yang, Nano Energy 2021, 86, 106087.

[36]

Y. Yu, A. Baskin, C. Valero-Vidal, N. T. Hahn, Q. Liu, K. R. Zavadil, B. W. Eichhorn, D. Prendergast, E. J. Crumlin, Chem. Mater. 2017, 29, 8504.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/