Unveiling the GeI2-Assisted Oriented Growth of Perovskite Crystallite for High-Performance Flexible Sn Perovskite Solar Cells

Huagui Lai , Selina Olthof , Shengqiang Ren , Radha K. Kothandaraman , Matthias Diethelm , Quentin Jeangros , Roland Hany , Ayodhya N. Tiwari , Dewei Zhao , Fan Fu

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12791

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12791 DOI: 10.1002/eem2.12791
RESEARCH ARTICLE

Unveiling the GeI2-Assisted Oriented Growth of Perovskite Crystallite for High-Performance Flexible Sn Perovskite Solar Cells

Author information +
History +
PDF

Abstract

Tin perovskites are emerging as promising alternatives to their lead-based counterparts for high-performance and flexible perovskite solar cells. However, their rapid crystallization often leads to inadequate film quality and poor device performance. In this study, the role of GeI2 as an additive is investigated for controlling the nucleation and crystallization processes of formamidinium tin triiodide (FASnI3). The findings reveal the preferential formation of a Ge-rich layer at the bottom of the perovskite film upon the introduction of GeI2. It is proposed that the initial formation of the Ge complex acts as a crystallization regulator, promoting oriented growth of subsequent FASnI3 crystals and enhancing overall crystallinity. Through the incorporation of an optimal amount of GeI2, flexible Sn perovskite solar cells with an efficiency of 10.8% were achieved. Furthermore, it was observed that the GeI2 additive ensures a remarkable shelf-life for the devices, with the rigid cells retaining 91% of their initial performance after more than 13 800 h of storage in an N2 gas environment. This study elucidates the mechanistic role of GeI2 in regulating the nucleation and crystallization process of tin perovskites, providing valuable insights into the significance of additive engineering for the development of high-performance flexible tin perovskite solar cells.

Keywords

additive / crystallization / flexible / lead-free / Sn perovskite solar cells

Cite this article

Download citation ▾
Huagui Lai, Selina Olthof, Shengqiang Ren, Radha K. Kothandaraman, Matthias Diethelm, Quentin Jeangros, Roland Hany, Ayodhya N. Tiwari, Dewei Zhao, Fan Fu. Unveiling the GeI2-Assisted Oriented Growth of Perovskite Crystallite for High-Performance Flexible Sn Perovskite Solar Cells. Energy & Environmental Materials, 2025, 8(1): e12791 DOI:10.1002/eem2.12791

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. M. Nie, R. R. Sumukam, S. H. Reddy, M. Banavoth, S. I. Seok, Energ. Environ. Sci. 2020, 13, 2363.

[2]

NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: February, 2024).

[3]

A. Babayigit, D. Duy Thanh, A. Ethirajan, J. Manca, M. Muller, H. G. Boyen, B. Conings, Sci. Rep. 2016, 6, 18721.

[4]

A. Abate, Joule 2017, 1, 659.

[5]

L. Xu, X. Feng, W. Jia, W. Lv, A. Mei, Y. Zhou, Q. Zhang, R. Chen, W. Huang, Energ. Environ. Sci. 2021, 14, 4292.

[6]

T.-B. Song, T. Yokoyama, S. Aramaki, M. G. Kanatzidis, ACS Energy Lett. 2017, 2, 897.

[7]

T. Rath, J. Handl, S. Weber, B. Friesenbichler, P. Fürk, L. Troi, T. Dimopoulos, B. Kunert, R. Resel, G. Trimmel, J. Mater. Chem. A 2019, 7, 9523.

[8]

M. Chen, M.-G. Ju, H. F. Garces, A. D. Carl, L. K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R. L. Grimm, D. Pacifici, X. C. Zeng, Y. Zhou, N. P. Padture, Nat. Commun. 2019, 10, 16.

[9]

M. A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura, Q. Shen, T. Toyoda, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, J. Phys. Chem. Lett. 2019, 10, 5277.

[10]

X. Meng, Y. Wang, J. Lin, X. Liu, X. He, J. Barbaud, T. Wu, T. Noda, X. Yang, L. Han, Joule 2020, 4, 902.

[11]

C. Liu, J. Tu, X. Hu, Z. Huang, X. Meng, J. Yang, X. Duan, L. Tan, Z. Li, Y. Chen, Adv. Funct. Mater. 2019, 29, 1808059.

[12]

J. Qiu, Y. Xia, Y. Chen, W. Huang, Adv. Sci. 2019, 6, 1800793.

[13]

F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 11445.

[14]

Y. Xia, C. Ran, Y. Chen, Q. Li, N. Jiang, C. Li, Y. Pan, T. Li, J. Wang, W. Huang, J. Mater. Chem. A 2017, 5, 3193.

[15]

T. M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W. L. Leong, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar, N. Mathews, J. Mater. Chem. A 2015, 3, 14996.

[16]

W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R. G. Xiong, Y. Yan, Adv. Mater. 2016, 28, 9333.

[17]

W. Ke, C. C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos, J. Liu, O. Y. Kontsevoi, M. Chen, D. Sarma, Y. Zhang, M. R. Wasielewski, M. G. Kanatzidis, Sci. Adv. 2017, 3, e1701293.

[18]

T. Nakamura, S. Yakumaru, M. A. Truong, K. Kim, J. Liu, S. Hu, K. Otsuka, R. Hashimoto, R. Murdey, T. Sasamori, H. D. Kim, H. Ohkita, T. Handa, Y. Kanemitsu, A. Wakamiya, Nat. Commun. 2020.

[19]

E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang, E. W.-G. Diau, Energ. Environ. Sci. 2018, 11, 2353.

[20]

N. Ito, M. A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, J. Phys. Chem. Lett. 2018, 9, 1682.

[21]

M. Chen, Q. Dong, C. Xiao, X. Zheng, Z. Dai, Y. Shi, J. M. Luther, N. P. Padture, ACS Energy Lett. 2022, 7, 2256.

[22]

S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo, S. I. Seok, J. Am. Chem. Soc. 2016, 138, 3974.

[23]

C. Li, A. Guerrero, S. Huettner, J. Bisquert, Nat. Commun. 2018.

[24]

J. Kurisinkal Pious, Y. Zwirner, H. Lai, S. Olthof, Q. Jeangros, E. Gilshtein, R. K. Kothandaraman, K. Artuk, P. Wechsler, C. Chen, C. M. Wolff, D. Zhao, A. N. Tiwari, F. Fu, ACS Appl. Mater. Interfaces 2023, 15, 10150.

[25]

G. Capellades, J. O. Bonsu, A. S. Myerson, CrstEngComm 2022, 24, 1989.

[26]

X. Jiang, H. Li, Q. Zhou, Q. Wei, M. Wei, L. Jiang, Z. Wang, Z. Peng, F. Wang, Z. Zang, K. Xu, Y. Hou, S. Teale, W. Zhou, R. Si, X. Gao, E. H. Sargent, Z. Ning, J. Am. Chem. Soc. 2021, 143, 10970.

[27]

A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Chem. Rev. 2021, 121, 14430.

[28]

R. Guo, L. Rao, Q. Liu, H. Wang, C. Gong, B. Fan, Z. Xing, X. Meng, X. Hu, J. Energy Chem. 2022, 66, 612.

[29]

J. Xi, Z. Wu, B. Jiao, H. Dong, C. Ran, C. Piao, T. Lei, T.-B. Song, W. Ke, T. Yokoyama, X. Hou, M. G. Kanatzidis, Adv. Mater. 2017, 29, 1606964.

[30]

L. Rao, X. Meng, S. Xiao, Z. Xing, Q. Fu, H. Wang, C. Gong, T. Hu, X. Hu, R. Guo, Y. Chen, Angew. Chem. Int. Ed. 2021, 60, 14693.

[31]

Y. Wang, T. Li, X. Chen, L. Zhang, Mater. Lett. 2022, 321, 132460.

[32]

T. Ye, X. Wang, K. Wang, S. Ma, D. Yang, Y. Hou, J. Yoon, K. Wang, S. Priya, ACS Energy Lett. 2021, 6, 1480.

[33]

X. Fan, J. Mater. Res. 2022, 37, 866.

[34]

W. Żuraw, F. A. Vinocour Pacheco, J. Sánchez-Diaz, Ł. Przypis, M. A. Mejia Escobar, S. Almosni, G. Vescio, J. P. Martínez-Pastor, B. Garrido, R. Kudrawiec, I. Mora-Seró, S. Öz, ACS Energy Lett. 2023, 8, 4885.

[35]

H. Dong, C. Ran, W. Li, X. Liu, W. Gao, Y. Xia, Y. Chen, W. Huang, Sci. China Chem. 2022, 65, 1895.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/