A Biomimetic Alveoli-in-Lung-Structured Electrode: Robustly Anchored Tungsten Oxide Quantum Dot on Ti3C2 MXene for Multifunctional Sodium-Ion-Based Electrochromic Devices

Qi Zhao , Jinkai Wang , Jianguo Sun , Changyuan Bao , Xue Chen , Junhui Wang , Yu Liu , Usha Bhat , Chin Ho Kirk , Yanfeng Gao , John Wang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12790

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12790 DOI: 10.1002/eem2.12790
RESEARCH ARTICLE

A Biomimetic Alveoli-in-Lung-Structured Electrode: Robustly Anchored Tungsten Oxide Quantum Dot on Ti3C2 MXene for Multifunctional Sodium-Ion-Based Electrochromic Devices

Author information +
History +
PDF

Abstract

Sodium-ion-based electrochromic device (SECD) has been identified as an appealing cost-effective alternative of lithium-based counterparts, only if it can address the challenges in association with the inadequate electrochromic performance. In this regard, the quantized strategy is a particularly promising approach owing to the large surface-to-volume ratio and high reaction activity. However, quantum dots inevitably suffer from volume changes and undesired aggregation during electrochemical cycling. Herein, bioinspired from the robust connection of alveoli in lung, we propose a stable electrode, where WO3 quantum dots (WQDs) are robustly anchored on Ti3C2 MXene through the strong chemical bonds of W-O-Ti. Theoretical results reveal the fundamental mechanism of the volume changes within WQDs and the dynamic diffusion process of sodium ions. The WQD@MXene electrodes exhibit a nearly twofold enhancement in cycling performance (1000 vs 500 cycles), coloration speed (3.2 vs 6.0 s), and areal capacity (87.5 vs 43.9 mAh m-2 at 0.1 mA cm-2), compared to those of the pristine WQD electrode. As a proof-of-concept demonstration, a smart house system integrated with SECDs demonstrates a “3-in-1” device, enabling a combination of energy-saving, energy storage, and display functionalities. The present work significantly advances the versatile applications of cost-effective electrochromic electronics in interdisciplinary.

Keywords

biomimetic / electrochromic / multifunctional / quantum dots / sodium ion

Cite this article

Download citation ▾
Qi Zhao, Jinkai Wang, Jianguo Sun, Changyuan Bao, Xue Chen, Junhui Wang, Yu Liu, Usha Bhat, Chin Ho Kirk, Yanfeng Gao, John Wang. A Biomimetic Alveoli-in-Lung-Structured Electrode: Robustly Anchored Tungsten Oxide Quantum Dot on Ti3C2 MXene for Multifunctional Sodium-Ion-Based Electrochromic Devices. Energy & Environmental Materials, 2025, 8(1): e12790 DOI:10.1002/eem2.12790

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. J. Mortimer, Chem. Soc. Rev. 1997, 26, 147.

[2]

Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu, J. Sun, S. Xie, Q. Wang, J. Wang, Y. Gao, Nano-Micro Lett. 2023, 15, 87.

[3]

Q. Zhao, J. Wang, X. Ai, Y. Duan, Z. Pan, S. Xie, J. Wang, Y. Gao, InfoMat 2022, 4, e12298.

[4]

J. Huang, X. Xie, K. Liu, S. Liang, G. Fang, Energy Environ. Mater. 2023, 6, e12309.

[5]

H. Li, C. J. Firby, A. Y. Elezzabi, Joule 2019, 3, 2268.

[6]

Q. Zhao, J. Wang, X. Ai, Z. Pan, F. Xu, J. Wang, Y. Gao, Nano Energy 2021, 89, 106356.

[7]

P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 2018, 57, 102.

[8]

K. Abraham, ACS Energy Lett. 2020, 5, 3544.

[9]

S. Sarkar, S. Roy, Y. Zhao, J. Zhang, Nano Res. 2021, 14, 3690.

[10]

Y. Cui, Q. Wang, G. Yang, Y. Gao, J. Solid State Chem. 2021, 297, 122082.

[11]

D. Dini, F. Decker, E. Masetti, J. Appl. Electrochem. 1996, 26, 647.

[12]

K. Patel, C. Panchal, M. Desai, P. Mehta, Mater. Chem. Phys. 2010, 124, 884.

[13]

R.-T. Wen, M. A. Arvizu, M. Morales-Luna, C. G. Granqvist, G. A. Niklasson, Chem. Mater. 2016, 28, 4670.

[14]

R. Li, K. Li, G. Wang, L. Li, Q. Zhang, J. Yan, Y. Chen, Q. Zhang, C. Hou, Y. Li, ACS Nano 2018, 12, 3759.

[15]

Y. Yao, Q. Zhao, W. Wei, Z. Chen, Y. Zhu, P. Zhang, Z. Zhang, Y. Gao, Nano Energy 2020, 68, 104350.

[16]

S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Adv. Mater. 2014, 26, 4260.

[17]

P. Liu, B. Wang, C. Wang, L. Ma, W. Zhang, E. Hopmann, L. Liu, A. Y. Elezzabi, H. Li, Adv. Funct. Mater. 2024, 34, 2400760.

[18]

X. Xiao, W. Zhou, Y. Kim, I. Ryu, M. Gu, C. Wang, G. Liu, Z. Liu, H. Gao, Adv. Funct. Mater. 2015, 25, 1426.

[19]

Y. Wang, S. Luo, M. Chen, L. Wu, Adv. Funct. Mater. 2020, 30, 2000373.

[20]

L. Knudsen, M. Ochs, Histochem. Cell Biol. 2018, 150, 661.

[21]

R. Pattle, Nature 1955, 175, 1125.

[22]

J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A Al-Ghamdi, Adv. Mater. 2017, 29, 1601694.

[23]

D. T. Ngo, R. S. Kalubarme, H. T. Le, J. G. Fisher, C. N. Park, I. D. Kim, C. J. Park, Adv. Funct. Mater. 2014, 24, 5291.

[24]

R. Mo, D. Rooney, K. Sun, H. Y. Yang, Nat. Commun. 2017, 8, 13949.

[25]

Y. Zeng, Z. Cao, J. Liao, H. Liang, B. Wei, X. Xu, H. Xu, J. Zheng, W. Zhu, L. Cavallo, Appl. Catal. Environ. 2021, 292, 120160.

[26]

G. Xu, L. Yang, X. Wei, J. Ding, J. Zhong, P. K. Chu, Adv. Funct. Mater. 2016, 26, 3349.

[27]

D. Ma, B. Hu, W. Wu, X. Liu, J. Zai, C. Shu, T. Tadesse Tsega, L. Chen, X. Qian, T. L. Liu, Nat. Commun. 2019, 10, 3367.

[28]

X. Du, X. Bai, L. Xu, L. Yang, P. Jin, Chem. Eng. J. 2020, 384, 123245.

[29]

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.

[30]

C. Bao, J. Wang, B. Wang, J. Sun, L. He, Z. Pan, Y. Jiang, D. Wang, X. Liu, S. X. Dou, ACS Nano 2022, 16, 17197.

[31]

I. Persson, J. Halim, H. Lind, T. W. Hansen, J. B. Wagner, L. Å. Näslund, V. Darakchieva, J. Palisaitis, J. Rosen, P. O. Persson, Adv. Mater. 2019, 31, 1805472.

[32]

L. H. Karlsson, J. Birch, J. Halim, M. W. Barsoum, P. O. Persson, Nano Lett. 2015, 15, 4955.

[33]

M. Fernandes, R. Leones, S. Pereira, A. Costa, J. Mano, M. M. Silva, E. Fortunato, V. de Zea Bermudez, R. Rego, Electrochim. Acta 2017, 232, 484.

[34]

A. Zimmer, M. Tresse, N. Stein, D. Horwat, C. Boulanger, Electrochim. Acta 2020, 360, 136931.

[35]

V.-T. Nguyen, B. K. Min, S. K. Kim, Y. Yi, C.-G. Choi, J. Mater. Chem. C 2021, 9, 3183.

[36]

W. Wu, H. Fang, H. Ma, L. Wu, W. Zhang, H. Wang, Nano-Micro Lett. 2021.

[37]

Z. Yuan, S. Ju, W. Li, H. Guo, K. Chen, M. Yue, X. Yu, Y. Wang, Chem. Eng. J. 2022, 450, 138453.

[38]

J. Luo, C. Fang, C. Jin, H. Yuan, O. Sheng, R. Fang, W. Zhang, H. Huang, Y. Gan, Y. Xia, J. Mater. Chem. A 2018, 6, 7794.

[39]

Q. Zhao, Y. Fang, K. Qiao, W. Wei, Y. Yao, Y. Gao, Sol. Energy Mater. Sol. Cells 2019, 194, 95.

[40]

P. Dias, T. Lopes, L. Meda, L. Andrade, A. Mendes, Phys. Chem. Chem. Phys. 2016, 18, 5232.

[41]

X. Li, S. Xiao, X. Niu, J. S. Chen, Y. Yu, Adv. Funct. Mater. 2021, 31, 2104798.

[42]

D. Zhou, J. Ni, L. Li, Nano Energy 2019, 57, 711.

[43]

X. Tang, J. Chen, Z. Wang, Z. Hu, G. Song, S. Zhang, Z. Chen, Q. Wu, M. Liu, S. Cong, Adv. Opt. Mater. 2021, 9, 2100637.

[44]

H. Li, A. Y. Elezzabi, Nanoscale Horizons 2020, 5, 691.

[45]

P. Yao, S. Xie, M. Ye, R. Yu, Q. Liu, D. Yan, W. Cai, W. Guo, X. Y. Liu, RSC Adv. 2017, 7, 29088.

[46]

Z. He, B. Gao, T. Li, J. Liao, B. Liu, X. Liu, C. Wang, Z. Feng, Z. Gu, ACS Sustain. Chem. Eng. 2018, 7, 1745.

[47]

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, W. Cheng, Adv. Mater. Technol. 2019, 4, 1800473.

[48]

H. Li, L. McRae, C. J. Firby, A. Y. Elezzabi, Adv. Mater. 2019, 31, 1807065.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/