Nanosheet-Doped Polymer Composites with High Intrinsic Piezoelectric Properties for Energy Harvesting

Kaihang Zhang , Jiaqi Lu , Xinyu Cai , Muhammad Naeem Shah , Jianhui Wu , Jie Li , Yifan Wu , Chi Zhang , Liangquan Xu , Haoze Kuang , Dinku Hazarika , Binghan Zhou , Zhuo Chen , Zhen Cao , Hao Jin , Shurong Dong , Yuhui Huang , Qilong Zhang , Yongjun Wu , Luigi Giuseppe Occhipinti , Tawfique Hasan , Jikui Luo

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12789

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12789 DOI: 10.1002/eem2.12789
RESEARCH ARTICLE

Nanosheet-Doped Polymer Composites with High Intrinsic Piezoelectric Properties for Energy Harvesting

Author information +
History +
PDF

Abstract

Few-layer nanosheets (NSs) of hexagonal boron nitride (h-BN) and molybdenum disulfide (MoS2) display notable piezoelectric properties. Yet, their integration into polymers typically yields non-piezoelectric composites due to NSs’ random distribution. We introduce a facile method for fabricating intrinsic piezoelectric composites incorporated with NSs without electric poling. Our innovative process aligns NSs within polyvinyl alcohol polymer, leveraging ice-water interfacial tension, water crystallization thrust, and directional cross-linking during freezing. The resulting PE composites exhibit a maximum piezoelectric coefficient of up to 25.5–28.4 pC N-1, comparable to polyvinylidene difluoride (PVDF), with significant cost-efficiency, safety, and scalability advantages over conventional materials. Using this composite, we develop highly sensitive wearable pressure and strain sensors, and an ultrasound energy harvester. These sensors detect finger bending and differentiate between walking and running, while the harvester generates ∼1.18 V/2.31 µA under 1 W cm-2 ultrasound input underwater. This universal method offers a novel manufacturing technique for piezoelectric composites, demonstrating remarkable effectiveness in synthesizing intrinsic piezoelectric composites based on 2D materials. Moreover, its potential extends to applications in wearable electronics and energy harvesting, promising significant advancements in these fields.

Keywords

nanoscale alignment process / piezoelectric composite / piezoelectric transducers and sensors / vertically aligned NSs

Cite this article

Download citation ▾
Kaihang Zhang, Jiaqi Lu, Xinyu Cai, Muhammad Naeem Shah, Jianhui Wu, Jie Li, Yifan Wu, Chi Zhang, Liangquan Xu, Haoze Kuang, Dinku Hazarika, Binghan Zhou, Zhuo Chen, Zhen Cao, Hao Jin, Shurong Dong, Yuhui Huang, Qilong Zhang, Yongjun Wu, Luigi Giuseppe Occhipinti, Tawfique Hasan, Jikui Luo. Nanosheet-Doped Polymer Composites with High Intrinsic Piezoelectric Properties for Energy Harvesting. Energy & Environmental Materials, 2025, 8(1): e12789 DOI:10.1002/eem2.12789

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Guhathakurta, M. A. Tayeb, T. Hoeks, IEEE International Symposium on Applications of Ferroelectrics (ISAF), IEEE, Sydney, NSW, Australia 2021, pp. 1-6.

[2]

E. Carvalho, L. Fernandes, C. M. Costa, S. Lanceros-Méndez, Encyclopedia of Materials: Composites, Elsevier, Amsterdam 2021, pp. 473-486.

[3]

A. Safari, E. K. Akdoğan (Eds), Piezoelectric and Acoustic Materials for Transducer Applications, Springer US, Boston, MA 2008, pp. 746-775.

[4]

T. Tang, Z. Shen, J. Wang, S. Xu, J. Jiang, J. Chang, M. Guo, Y. Fan, Y. Xiao, Z. Dong, H. Huang, X. Li, Y. Zhang, D. Wang, L. Q. Chen, K. Wang, S. Zhang, C.-W. Nan, Y. Shen, Natl. Sci. Rev. 2023, 10, nwad177.

[5]

A. Wazeer, A. Das, A. Sinha, A. Karmakar, in Handbook of Smart Energy Systems (Eds: M. Fathi, E. Zio, P. M. Pardalos), Springer International Publishing, Cham 2023, pp. 489-501.

[6]

M. H. Malakooti, F. Julé, H. A. Sodano, ACS Appl. Mater. Interfaces 2018, 10, 38359.

[7]

K.-A. N. Duerloo, M. T. Ong, E. J. Reed, J. Phys. Chem. Lett. 2012, 3, 2871.

[8]

M. N. Blonsky, H. L. Zhuang, A. K. Singh, R. G. Hennig, ACS Nano 2015, 9, 9885.

[9]

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, Z. L. Wang, Nature 2014, 514, 470.

[10]

M. Zhang, J. Yang, C. Si, G. Han, Y. Zhao, J. Ning, Micromachines 2015, 6, 1236.

[11]

S. V. P Vattikuti, C. Byon, J. Nanomater. 2015, 2015, e710462.

[12]

H. Kuang, Y. Li, S. Huang, Nano Energy 2021, 80, 105561.

[13]

J. Y. Fu, P. Y. Liu, J. Cheng, A. S. Bhalla, R. Guo, Appl. Phys. Lett. 2007, 90, 212907.

[14]

T. J. Bukowski, K. McCarthy, F. McCarthy, G. Teowee, T. P. Alexander, D. R. Uhlmann, J. T. Dawley, B. J. J. Zelinski, Integr. Ferroelectr. 1997, 17, 339.

[15]

M.-A. Dubois, P. Muralt, Appl. Phys. Lett. 1999, 74, 3032.

[16]

L. Lu, W. Ding, J. Liu, B. Yang, Nano Energy 2020, 78, 105251.

[17]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147.

[18]

H. S. Mansur, C. M. Sadahira, A. N. Souza, A. A. P. Mansur, Mater. Sci. Eng. C 2008, 28, 539.

[19]

P. M. Sudeep, S. Vinod, S. Ozden, R. Sruthi, A. Kukovecz, Z. Konya, R. Vajtai, M. R. Anantharaman, P. M. Ajayan, T. N. Narayanan, RSC Adv. 2015, 5, 93964.

[20]

H. Harrison, J. T. Lamb, K. S. Nowlin, A. J. Guenthner, K. B. Ghiassi, A. D. Kelkar, J. R. Alston, Nanoscale Adv. 2019, 1, 1693.

[21]

K. Zhou, S. Jiang, C. Bao, L. Song, B. Wang, G. Tang, Y. Hu, Z. Gui, RSC Adv. 2012, 2, 11695.

[22]

K.-G. Zhou, F. Withers, Y. Cao, S. Hu, G. Yu, C. Casiraghi, ACS Nano 2014, 8, 9914.

[23]

T. Kozai, S. Yamashita, K. Hirochi, H. Miyagawa, N. Tsurumachi, S. Koshiba, S. Nakanishi, H. Itoh, Chem. Phys. Lett. 2012, 553, 26.

[24]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695.

[25]

M. Shanmugam, N. Jain, R. Jacobs-Gedrim, Y. Xu, B. Yu, Appl. Phys. Lett. 2013, 103, 243904.

[26]

W. Zhong, S. Deng, K. Wang, G. Li, G. Y. Li, R. Chen, H. Kwok, Nano 2018, 8, 590.

[27]

E. Waglewska, U. Bazylińska, Int. J. Mol. Sci. 2021, 22, 11776.

[28]

J. Gao, Z. Xing, J. Zhou, H. Xu, Z. Wang, G. Li, L. Yu, Dalton Trans. 2022, 51, 5127.

[29]

A. Iqbal, F. Mohd-Yasin, Sensors 2018, 18, 1797.

[30]

S. Chandra, A. Vir Singh, Key Eng. Mater. 2012, 500, 84.

[31]

L. Xie, G. Wang, C. Jiang, F. Yu, X. Zhao, Crystals 2021, 11, 644.

[32]

C. Yuan, C. Zhang, C. Yang, F. Wu, S. Xiao, H. Sun, J. Electron. Mater. 2023, 52, 7193.

[33]

A. D. S McWilliams, C. A. de los Reyes, L. Liberman, S. Ergülen, Y. Talmon, M. Pasquali, A. A. Martí, Nanoscale Adv. 2019, 1, 1096.

[34]

J. Wang, X. Ding, Z. Lan, G. Liu, S. Hou, S. Hou, Crit. Rev. Anal. Chem. 2022.

[35]

Z. Duan, Y. Jiang, H. Tai, J. Mater. Chem. C 2021, 9, 14963.

[36]

K. Prashanthi, H. Zhang, V. Ramgopal Rao, T. Thundat, Phys. Status Solidi Rapid Res. Lett. 2012, 6, 77.

[37]

Z. Jiang, B. He, X. Zhu, Q. Ren, Y. Zhang, Constr. Build. Mater. 2020, 257, 119456.

[38]

C. B. Mast, S. Schink, U. Gerland, D. Braun, Proc. Natl Acad. Sci. USA 2013, 110, 8030.

[39]

P. Yusong, X. Dangsheng, C. Xiaolin, J. Mater. Sci. 2007, 42, 5129.

[40]

S. Mukherjee, S. Mondal, B. Bagchi, Ice-water Interface: Correlation between Structure and Dynamics. 2019, arXiv preprint arXiv:1908.00299.

[41]

P. Irajizad, S. Nazifi, H. Ghasemi, Adv. Colloid Interf. Sci. 2019, 269, 203.

[42]

H. Yang, H. Fang, H. Yu, Y. Chen, L. Wang, W. Jiang, Y. Wu, J. Li, Nat. Commun. 2019, 10, 854.

[43]

S. F. Burlatsky, V. V. Atrazhev, D. V. Dmitriev, V. I. Sultanov, E. N. Timokhina, E. A. Ugolkova, S. Tulyani, A. Vincitore, J. Colloid Interface Sci. 2013, 393, 151.

[44]

L. Qian, H. Zhang, J. Chem. Technol. Biotechnol. 2011, 86, 172.

[45]

P. Casses, A. Azouni, in Dynamics of Multiphase Flows Across Interfaces (Ed: A. Steinchen), Springer, Berlin Heidelberg 1996, pp. 193-206.

[46]

C. Körber, G. Rau, M. D. Cosman, E. G. Cravalho, J. Cryst. Growth 1985, 72, 649.

[47]

B. Pullman (Ed), Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Springer Netherlands, Dordrecht 1981, pp. 33-48.

[48]

G. Zhou, Y. Zhou, K. Hu, Y. Wang, X. Shang, Acta Geotech. 2018, 13, 207.

[49]

G. Liu, Z. Zhang, Z. Cheng, G. Hao, Y. Hao, T. Fu, Front. Earth Sci. 2023, 10, 3389.

[50]

C. Xu, C. Wang, K. Zhang, X. Luo, G. Li, Electrochim. Acta 2023, 458, 142526.

[51]

Y. Mao, M. Shen, B. Liu, L. Xing, S. Chen, X. Xue, Sensors 2019, 19, 3310.

[52]

G.-Y. Li, J. Li, Z.-J. Li, Y.-P. Zhang, X. Zhang, Z.-J. Wang, W.-P. Han, B. Sun, Y.-Z. Long, H.-D. Zhang, Adv. Compos. Hybrid Mater. 2022, 5, 766.

[53]

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, S.-W. Kim, Science 2019, 365, 491.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/