Vastly Synergistic Fe2CuNiS4-Nanoarchitectures Anchored 2D-Nano-Sandwich Derived from Flower-Like-CuFeS2/N-Graphene and Cube-Like-NiFeS2/N-CNTs for Water Oxidation and Nitrophenol Reduction

Gopiraman Mayakrishnan , Ramkumar Vanaraj , Junpeng Xiong , Muhammad Farooq , Azeem Ullah , Keqin Zhang , Seong Cheol Kim , Ick Soo Kim

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12788

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12788 DOI: 10.1002/eem2.12788
RESEARCH ARTICLE

Vastly Synergistic Fe2CuNiS4-Nanoarchitectures Anchored 2D-Nano-Sandwich Derived from Flower-Like-CuFeS2/N-Graphene and Cube-Like-NiFeS2/N-CNTs for Water Oxidation and Nitrophenol Reduction

Author information +
History +
PDF

Abstract

Surface area, pore properties, synergistic behavior, homogenous dispersion, and interactions between carbon matrix and metal-nanostructures are the key factors for achieving the better performance of carbon-metal based (electro)catalysts. However, the traditional hydro- or solvothermal preparation of (electro)catalysts, particularly, bi- or tri-metallic nanostructures anchored graphene (G) or carbon nanotubes (CNTs), often pose to poor metal–support interaction, low synergism, and patchy dispersion. At first, bimetallic flower-like-CuFeS2/NG and cube-like-NiFeS2/NCNTs nanocomposites were prepared by solvothermal method. The resultant bimetallic nanocomposites were employed to derive the 2D-nano-sandwiched Fe2CuNiS4/NGCNTs-SW (electro)catalyst by a very simple and green urea-mediated “mix-heat” method. The desired physicochemical properties of Fe2CuNiS4/NGCNTs-SW such as multiple active sites, strong metal-support interaction, homogenous dispersion and enhanced surface area were confirmed by various microscopic and spectroscopic techniques. To the best of our knowledge, this is the first urea-mediated “mix-heat” method for preparing 2D-nano-sandwiched carbon-metal-based (electro)catalysts. The Fe2CuNiS4/NGCNTs-SW was found to be highly effective for alkaline-mediated oxygen evolution reaction at low onset potential of 284.24 mV, and the stable current density of 10 mA cm−2 in 1.0 M KOH for 10 h. Further, the Fe2CuNiS4/NGCNTs-SW demonstrated excellent catalytic activity in the reduction of 4-nitrophenol with good kapp value of 87.71 × 10−2 s−1 and excellent reusability over five cycles. Overall, the developed urea-mediated “mix-heat” method is highly efficient for the preparation of metal-nanoarchitectures anchored 2D-nano-sandwiched (electro)catalysts with high synergism, uniform dispersion and excellent metal-support interaction.

Keywords

(electro)catalyst / metal-sulfide nanoarchitectures / mix-heat / N-graphene/NCNTs / synergistic effect / urea

Cite this article

Download citation ▾
Gopiraman Mayakrishnan, Ramkumar Vanaraj, Junpeng Xiong, Muhammad Farooq, Azeem Ullah, Keqin Zhang, Seong Cheol Kim, Ick Soo Kim. Vastly Synergistic Fe2CuNiS4-Nanoarchitectures Anchored 2D-Nano-Sandwich Derived from Flower-Like-CuFeS2/N-Graphene and Cube-Like-NiFeS2/N-CNTs for Water Oxidation and Nitrophenol Reduction. Energy & Environmental Materials, 2024, 7(6): e12788 DOI:10.1002/eem2.12788

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Jamal, A. Rafique, S. Moeen, J. Haider, W. Nabgan, A. Haider, M. Imran, G. Nazir, M. Alhassan, M. Ikram, Q. Khan, ACS Appl. Nano Mater. 2023, 6, 7077.

[2]

F. Lu, D. Astruc, Coord. Chem. Rev. 2020, 408, 213180.

[3]

A. P. Ramos, M. A. Cruz, C. B. Tovani, P. Ciancaglini, Biophys. Rev. 2017, 9, 79.

[4]

M. P. Ajith, M. Aswathi, E. Priyadarshini, P. Rajamani, Bioresour. Technol. 2021, 342, 126000.

[5]

X. Qu, J. Brame, Q. Li, P. J. Alvarez, Acc. Chem. Res. 2013, 46, 834.

[6]

A. K. Hussein, Renew. Sust. Energ. Rev. 2015, 42, 460.

[7]

E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Science 2019, 366, eaan8285.

[8]

E. Shi, Y. Gao, B. P. Finkenauer, A. H. Akriti Coffey, L. Dou, Chem. Soc. Rev. 2018, 47, 6046.

[9]

U. Farooq, T. Ahmad, F. Naaz, S. U. Islam, Energy Fuel 2023, 37, 1577.

[10]

S. Zhang, X. Ou, Q. Xiang, S. A. Carabineiro, J. Fan, K. Lv, Chemosphere 2022, 303, 135085.

[11]

C. J. Huang, H. M. Xu, T. Y. Shuai, Q. N. Zhan, Z. J. Zhang, G. R. Li, Appl. Catal. B Environ. 2023, 325, 122313.

[12]

H. Wang, J. Li, K. Li, Y. Lin, J. Chen, L. Gao, V. Nicolosi, X. Xiao, J. M. Lee, Chem. Soc. Rev. 2021, 50, 1354.

[13]

M. Gopiraman, S. Ganesh Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R. Karvembu, I. S. Kim, J. Phys. Chem. C 2013, 117, 23582.

[14]

M. Gopiraman, R. Karvembu, I. S. Kim, ACS Catal. 2014, 4, 2118.

[15]

M. Gopiraman, H. Bang, G. Yuan, C. Yin, K. H. Song, J. S. Lee, I. M. Chung, R. Karvembu, I. S. Kim, Carbohydr. Polym. 2015, 132, 554.

[16]

C. H. Lai, M. Y. Lu, L. J. Chen, J. Mater. Chem. 2012, 22, 19.

[17]

Y. Liu, Y. Li, H. Kang, T. Jin, L. Jiao, Mater. Horiz. 2016, 3, 402.

[18]

M. Rajamathi, R. Seshadri, Curr. Opin. Solid State Mater. Sci. 2002, 6, 337.

[19]

X. Chen, R. Fan, Chem. Mater. 2001, 13, 802.

[20]

B. J. Rani, S. S. Pradeepa, Z. M. Hasan, G. Ravi, R. Yuvakkumar, S. I. Hong, J. Phys. Chem. Solids 2020, 138, 109240.

[21]

X. Li, L. Chen, P. Zhang, A. B. Abdeta, Q. Wu, B. Wu, J. Lin, D. H. Kuo, Y. Zhang, X. Chen, J. Sci. Adv. Mater. Devices 2023, 8, 100598.

[22]

J. R. Xavier, J. Mater. Eng. Perform. 2023, 32(9), 1.

[23]

P. Sakthivel, M. Karuppiah, S. Asaithambi, V. Balaji, M. S. Pandian, P. Ramasamy, M. K. Mohammed, N. Navaneethan, G. Ravi, Ceram. Int. 2022, 48, 6157.

[24]

Z. Zhu, J. Hao, H. Zhu, S. Sun, F. Duan, S. Lu, M. Du, Adv. Fiber Mater. 2021, 3, 117.

[25]

S. S. Chandraraj, J. R. Xavier, Surf. Interfaces 2023, 36, 102515.

[26]

D. M. El-Gendy, I. M. Afifi, N. K. Allam, J. Energy Storage 2019, 24, 100760.

[27]

I. Sheebha, V. Maheskumar, A. Sebastian, B. Vidhya, A. Sakunthala, Int. J. Hydrog. Energy 2022, 47, 25583.

[28]

R. Matos, M. S. Nunes, I. Kuzniarska-Biernacka, M. Rocha, A. Guedes, A. C. Estrada, J. L. Lopes, T. Trindade, C. Freire, Eur. J. Inorg. Chem. 2021, 2021, 4915.

[29]

H. Han, K. M. Kim, H. Choi, G. Ali, K. Y. Chung, Y. R. Hong, J. Choi, J. Kwon, S. W. Lee, J. W. Lee, J. H. Ryu, ACS Catal. 2018, 8, 4091.

[30]

D. Deng, L. Xiao, I. M. Chung, I. S. Kim, M. Gopiraman, ACS Sustain. Chem. Eng. 2017, 5, 1253.

[31]

M. Gopiraman, S. G. Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R. Karvembu, I. S. Kim, Carbon 2013, 62, 135.

[32]

K. Wei, K. O. Kim, K. H. Song, C. Y. Kang, J. S. Lee, M. Gopiraman, I. S. Kim, J. Mater. Sci. Technol. 2017, 33, 424.

[33]

V. Elayappan, P. A. Shinde, G. K. Veerasubramani, S. C. Jun, H. S. Noh, K. Kim, M. Kim, H. Lee, Dalton Trans. 2020, 49, 1157.

[34]

M. Gopiraman, S. G. Babu, Z. Khatri, K. Wei, M. Endo, R. Karvembu, I. S. Kim, Catal. Sci. Technol. 2013, 3, 1485.

[35]

P. Waldner, J. Phase Equilib. Diffus. 2022, 43, 495.

[36]

S. Khalid, E. Ahmed, M. A. Malik, D. J. Lewis, S. A. Bakar, Y. Khan, P. O’Brien, New J. Chem. 2015, 39, 1013.

[37]

N. P. Ngidi, M. A. Ollengo, V. O. Nyamori, Dent. Mater. 2019, 12, 3376.

[38]

A. H. Labulo, B. Omondi, V. O. Nyamori, SN Appl. Sci 2019.

[39]

D. M. El-Gendy, N. A. A. Ghany, E. F. El Sherbini, N. K. Allam, Sci. Rep. 2017, 7, 43104.

[40]

M. P. Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan, D. K. Pattanayak, RSC Adv. 2014, 4, 38689.

[41]

V. Elayappan, R. Shanmugam, S. Chinnusamy, D. J. Yoo, G. Mayakrishnan, K. Kim, H. S. Noh, M. K. Kim, H. Lee, Appl. Surf. Sci. 2020, 505, 144642.

[42]

M. Gopiraman, H. Bang, S. G. Babu, K. Wei, R. Karvembu, I. S. Kim, Catal. Sci. Technol 2014, 4, 2099.

[43]

Z. Ma, Y. Han, Q. Wang, X. Wang, G. Sun, Y. Li, Int. J. Hydrog. Energy 2023, 48, 9636.

[44]

E. Vijayakumar, S. Ramakrishnan, C. Sathiskumar, D. J. Yoo, J. Balamurugan, H. S. Noh, D. Kwon, Y. H. Kim, H. Lee, Chem. Eng. J. 2022, 428, 131115.

[45]

J. Jiang, S. Lu, H. Gao, X. Zhang, H. Q. Yu, Nano Energy 2016, 27, 526.

[46]

X. Wang, Y. Zhou, S. Ndayiragije, N. Wang, H. Tang, L. Zhu, J. Environ. Sci. 2023, 126, 348.

[47]

J. Li, Z. Zhao, Y. Ma, Y. Qu, ChemCatChem 2017, 9, 1554.

[48]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.

[49]

B. You, Y. Sun, Acc. Chem. Res. 2018, 51, 1571.

[50]

C. Zhang, S. Bhoyate, P. K. Kahol, K. Siam, T. P. Poudel, S. R. Mishra, F. Perez, A. Gupta, G. Gupta, R. K. Gupta, Chem. Nano Mat. 2018, 4, 1240.

[51]

S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A. R. Kim, S. Sengodan, D. J. Yoo, Appl. Catal. B Environ. 2020, 279, 119381.

[52]

W. Dai, Y. Pan, N. Wang, S. Wu, X. Li, Y. A. Zhu, T. Lu, Mater. Lett. 2018, 218, 115.

[53]

N. S. Gultom, C. H. Li, D. H. Kuo, H. Abdullah, ACS Appl. Mater. Interfaces 2022, 14, 39917.

[54]

J. F. Qin, M. Yang, S. Hou, B. Dong, T. S. Chen, X. Ma, J. Y. Xie, Y. N. Zhou, J. Nan, Y. M. Chai, Appl. Surf. Sci. 2020, 502, 144172.

[55]

N. Cheng, Q. Liu, A. M. Asiri, W. Xing, X. Sun, J. Mater. Chem. A 2015, 3, 23207.

[56]

P. Chen, T. Zhou, M. Zhang, Y. Tong, C. Zhong, N. Zhang, L. Zhang, C. Wu, Y. Xie, Adv. Mater. 2017, 29, 1701584.

[57]

H. Hu, B. Guan, B. Xia, X. W. Lou, J. Am. Chem. Soc. 2015, 137, 5590.

[58]

Y. Zhao, S. Chen, B. Sun, D. Su, X. Huang, H. Liu, Y. Yan, K. Sun, G. Wang, Sci. Rep. 2015, 5, 7629.

[59]

G. Mayakrishnan, S. Somasundaram, S. Ullah, I. Andivelu, I. S. Kim, I. M. Chung, Catalysts 2019, 9, 908.

[60]

M. Gopiraman, D. Deng, S. Saravanamoorthy, I. M. Chung, I. S. Kim, RSC Adv. 2018, 8, 3014.

[61]

M. Gopiraman, S. Saravanamoorthy, R. Baskar, A. Ilangovan, New J. Chem. 2019, 43, 17090.

[62]

M. Gopiraman, S. Saravanamoorthy, I. M. Chung, Res. Chem. Intermed. 2017, 43, 5601.

[63]

M. Gopiraman, I. M. Chung, Korean J. Chem. Eng. 2017, 34, 2169.

[64]

M. Gopiraman, D. Deng, S. Ganesh Babu, T. Hayashi, R. Karvembu, I. S. Kim, ACS Sustain. Chem. Eng. 2015, 3, 2478.

[65]

F. H. Lin, R. A. Doong, J. Phys. Chem. C 2011, 115, 6591.

[66]

S. Ahmad, C. Yang, W. Xie, Z. Deng, H. Zhang, Y. Zhao, X. Su, Carbon 2020, 158, 912.

[67]

O. A. Zelekew, D. H. Kuo, RSC Adv. 2017, 7, 4353.

[68]

S. Ni, L. Yang, H. Qu, X. Zhu, Z. Xu, M. Yuan, H. Xing, L. Wang, J. Yu, H. Liu, J. Environ. Chem. Eng. 2021, 9, 105101.

[69]

E. Aykut, M. Sert, E. Sert, J. Water Proc. Eng. 2023, 54, 103970.

[70]

Y. Guo, O. A. Zelekew, H. Sun, D. H. Kuo, J. Lin, X. Chen, Sep. Purif. Technol. 2020, 242, 116769.

[71]

X. Du, J. He, J. Zhu, L. Sun, S. An, Appl. Surf. Sci. 2012, 258, 2717.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/