Vastly Synergistic Fe2CuNiS4-Nanoarchitectures Anchored 2D-Nano-Sandwich Derived from Flower-Like-CuFeS2/N-Graphene and Cube-Like-NiFeS2/N-CNTs for Water Oxidation and Nitrophenol Reduction
Gopiraman Mayakrishnan , Ramkumar Vanaraj , Junpeng Xiong , Muhammad Farooq , Azeem Ullah , Keqin Zhang , Seong Cheol Kim , Ick Soo Kim
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12788
Vastly Synergistic Fe2CuNiS4-Nanoarchitectures Anchored 2D-Nano-Sandwich Derived from Flower-Like-CuFeS2/N-Graphene and Cube-Like-NiFeS2/N-CNTs for Water Oxidation and Nitrophenol Reduction
Surface area, pore properties, synergistic behavior, homogenous dispersion, and interactions between carbon matrix and metal-nanostructures are the key factors for achieving the better performance of carbon-metal based (electro)catalysts. However, the traditional hydro- or solvothermal preparation of (electro)catalysts, particularly, bi- or tri-metallic nanostructures anchored graphene (G) or carbon nanotubes (CNTs), often pose to poor metal–support interaction, low synergism, and patchy dispersion. At first, bimetallic flower-like-CuFeS2/NG and cube-like-NiFeS2/NCNTs nanocomposites were prepared by solvothermal method. The resultant bimetallic nanocomposites were employed to derive the 2D-nano-sandwiched Fe2CuNiS4/NGCNTs-SW (electro)catalyst by a very simple and green urea-mediated “mix-heat” method. The desired physicochemical properties of Fe2CuNiS4/NGCNTs-SW such as multiple active sites, strong metal-support interaction, homogenous dispersion and enhanced surface area were confirmed by various microscopic and spectroscopic techniques. To the best of our knowledge, this is the first urea-mediated “mix-heat” method for preparing 2D-nano-sandwiched carbon-metal-based (electro)catalysts. The Fe2CuNiS4/NGCNTs-SW was found to be highly effective for alkaline-mediated oxygen evolution reaction at low onset potential of 284.24 mV, and the stable current density of 10 mA cm−2 in 1.0 M KOH for 10 h. Further, the Fe2CuNiS4/NGCNTs-SW demonstrated excellent catalytic activity in the reduction of 4-nitrophenol with good kapp value of 87.71 × 10−2 s−1 and excellent reusability over five cycles. Overall, the developed urea-mediated “mix-heat” method is highly efficient for the preparation of metal-nanoarchitectures anchored 2D-nano-sandwiched (electro)catalysts with high synergism, uniform dispersion and excellent metal-support interaction.
(electro)catalyst / metal-sulfide nanoarchitectures / mix-heat / N-graphene/NCNTs / synergistic effect / urea
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |