Engineered Lysozyme: An Eco-Friendly Bio-Mechanical Energy Harvester

Krittish Roy , Zinnia Mallick , Charlie O’Mahony , Laura Coffey , Hema Dinesh Barnana , Sarah Markham , Utsa Sarkar , Tewfik Solumane , Ehtsham Ul Haque , Dipankar Mandal , Syed A. M. Tofail

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12787

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12787 DOI: 10.1002/eem2.12787
RESEARCH ARTICLE

Engineered Lysozyme: An Eco-Friendly Bio-Mechanical Energy Harvester

Author information +
History +
PDF

Abstract

Eco-friendly and antimicrobial globular protein lysozyme is widely produced for several commercial applications. Interestingly, it can also be able to convert mechanical and thermal energy into electricity due to its piezo- and pyroelectric nature. Here, we demonstrate engineering of lysozyme into piezoelectric devices that can exploit the potential of lysozyme as environmentally friendly, biocompatible material for mechanical energy harvesting and sensorics, especially in micropowered electronic applications. Noteworthy that this flexible, shape adaptive devices made of crystalline lysozyme obtained from hen egg white exhibited a longitudinal piezoelectric charge coefficient (d ∼ 2.7 pC N-1) and piezoelectric voltage coefficient (g ∼ 76.24 mV m N-1) which are comparable to those of quartz (∼2.3 pC N-1 and 50 mV m N-1). Simple finger tapping on bio-organic energy harvester (BEH) made of lysozyme produced up to 350 mV peak-to-peak voltage, and a maximum instantaneous power output of 2.2 nW cm-2. We also demonstrated that the BEH could be used for self-powered motion sensing for real-time monitoring of different body functions. These results pave the way toward self-powered, autonomous, environmental-friendly bio-organic devices for flexible energy harvesting, storage, and in wearable healthcare monitoring.

Keywords

energy harvester / lysozyme / piezoelectric material / self-powered motion sensing

Cite this article

Download citation ▾
Krittish Roy, Zinnia Mallick, Charlie O’Mahony, Laura Coffey, Hema Dinesh Barnana, Sarah Markham, Utsa Sarkar, Tewfik Solumane, Ehtsham Ul Haque, Dipankar Mandal, Syed A. M. Tofail. Engineered Lysozyme: An Eco-Friendly Bio-Mechanical Energy Harvester. Energy & Environmental Materials, 2025, 8(1): e12787 DOI:10.1002/eem2.12787

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Wang, J. Song, J. Liu, Z. L. Wang, Science 2007, 316, 102.

[2]

J. Zhong, Y. Ma, Y. Song, Q. Zhong, Y. Chu, I. Karakurt, D. B. Bogy, L. Lin, ACS Nano 2019, 13, 7107.

[3]

Z. Dong, D. Gao, Z. Li, H. Pei, L. Xu, J. Huang, X. Cao, Y. Wang, T. Wang, Q. Wei, Z. Zhang, Y. Liu, Energy Environ. Mater. 2024.

[4]

D. Yang, L. Zhang, L. Wang, K. Wang, ACS Appl. Electron. Mater. 2023, 5, 6063.

[5]

F. R. Fan, W. Tang, Z. L. Wang, Adv. Mater. 2016, 28, 4283.

[6]

L. Sun, Z. Ye, X. Peng, S. Zhuang, D. Li, Z. Jin, Energy Environ. Mater. 2023.

[7]

K. Roy, S. Jana, Z. Mallick, S. K. Ghosh, B. Dutta, S. Sarkar, C. Sinha, D. Mandal, Langmuir 2021, 37, 7107.

[8]

Y. Wang, X. Wen, Y. Jia, M. Huang, F. Wang, X. Zhang, Y. Bai, G. Yuan, Y. Wang, Nat. Commun. 2020, 11, 1328.

[9]

K. Roy, S. Jana, S. K. Ghosh, B. Mahanty, Z. Mallick, S. Sarkar, C. Sinha, D. Mandal, Langmuir 2020, 36, 11477.

[10]

S. K. Karan, D. Mandal, B. B. Khatua, Nanoscale 2015, 7, 10655.

[11]

E. Fukada, J. Phys. Soc. Jpn. 1955, 10, 149.

[12]

E. Fukada, I. Yasuda, Jpn. J. Appl. Phys. 1964, 3, 117.

[13]

A. A. Gandhi, M. Wojtas, S. B. Lang, A. L. Kholkin, S. A. M. Tofail, J. Am. Ceram. Soc. 2014, 97, 2867.

[14]

S. Markham, A. Stapleton, E. U. Haq, K. Kowal, S. A. M. Tofail, Ferroelectrics 2017, 509, 99.

[15]

Y. Liu, Y. Wang, M. J. Chow, N. Q. Chen, F. Ma, Y. Zhang, J. Li, Phys. Rev. Lett. 2013, 110, 168101.

[16]

S. Guerin, A. Stapleton, D. Chovan, R. Mouras, M. Gleeson, C. McKeown, M. R. Noor, C. Silien, F. M. F. Rhen, A. L. Kholkin, N. Liu, T. Soulimane, S. A. M. Tofail, D. Thompson, Nat. Mater. 2018, 17, 180.

[17]

S. Guerin, J. O’Donnell, E. U. Haq, C. McKeown, C. Silien, F. M. F. Rhen, T. Soulimane, S. A. M. Tofail, D. Thompson, Phys. Rev. Lett. 2019, 122, 047701.

[18]

T. Yucel, P. Cebe, D. L. Kaplan, Adv. Funct. Mater. 2011, 21, 779.

[19]

J. Kim, S. Yun, Z. Ounaies, Macromolecules 2006, 39, 4202.

[20]

H. Ueda, E. Fakada, Jpn. J. Appl. Phys. 1971, 10, 1650.

[21]

B. Y. Lee, J. Zhang, C. Zueger, W.-J. Chung, S. Y. Yoo, E. Wang, J. Meyer, R. Ramesh, S.-W. Lee, Nat. Nanotechnol. 2012, 7, 351.

[22]

D.-M. Shin, H. J. Han, W.-G. Kim, E. Kim, C. Kim, S. W. Hong, H. K. Kim, J.-W. Oh, Y.-H. Hwang, Energy Environ. Sci. 2015, 8, 3198.

[23]

R. Hinchet, S.-W. Kim, ACS Nano 2015, 9, 7742.

[24]

C. Dagdeviren, B. D. Yang, Y. Su, P. L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, Proc. Natl. Acad. Sci. USA 1927, 2014, 111.

[25]

D. Kim, S. A. Han, J. H. Kim, J. Lee, S. Kim, S. Lee, Adv. Mater. 2020, 32, 1906989.

[26]

J. Li, Y. Long, F. Yang, X. Wang, Curr. Opin. Solid State Mater. Sci. 2020, 24, 100806.

[27]

T. Someya, Z. Bao, G. G. Malliaras, Nature 2016, 540, 379.

[28]

Y. Zhang, Y. Bao, D. Zhang, C. R. Bowen, J. Am. Ceram. Soc. 2015, 98, 2980.

[29]

P. R. Tulip, S. J. Clark, Phys. Rev. B 2006, 74, 64301.

[30]

P. R. Tulip, S. J. Clark, J. Chem. Phys. 2004, 121, 5201.

[31]

Z. Zhang, X. Li, Z. Peng, X. Yan, S. Liu, Y. Hong, Y. Shan, X. Xu, L. Jin, B. Liu, Nat. Commun. 2023, 14, 4094.

[32]

F. Yang, J. Li, Y. Long, Z. Zhang, L. Wang, J. Sui, Y. Dong, Y. Wang, R. Taylor, D. Ni, Science 2021, 373, 337.

[33]

L. Fumagalli, D. Esteban-Ferrer, A. Cuervo, J. L. Carrascosa, G. Gomila, Nat. Mater. 2012, 11, 808.

[34]

T. R. Shrout, S. J. Zhang, J. Electroceram. 2007, 19, 113.

[35]

F. Yu, Q. Lu, S. Zhang, H. Wang, X. Cheng, X. Zhao, J. Mater. Chem. C 2015, 3, 329.

[36]

V. Nguyen, R. Zhu, K. Jenkins, R. Yang, Nat. Commun. 2016, 7, 13566.

[37]

S. Bera, S. Guerin, H. Yuan, J. O’Donnell, N. P. Reynolds, O. Maraba, W. Ji, L. J. W. Shimon, P.-A. Cazade, S. A. M. Tofail, Nat. Commun. 2021, 12, 2634.

[38]

S. K. Ghosh, D. Mandal, Appl. Phys. Lett. 2017, 110, 123701.

[39]

S. K. Ghosh, D. Mandal, Nano Energy 2016, 28, 356.

[40]

S. K. Ghosh, D. Mandal, ACS Sustain. Chem. Eng. 2017, 5, 8836.

[41]

M. Minary-Jolandan, M.-F. Yu, Nanotechnology 2009, 20, 85706.

[42]

C. Harnagea, M. Vallières, C. P. Pfeffer, D. Wu, B. R. Olsen, A. Pignolet, F. Légaré, A. Gruverman, Biophys. J. 2010, 98, 3070.

[43]

M. Minary-Jolandan, M.-F. Yu, ACS Nano 1859, 2009, 3.

[44]

D. Denning, J. I. Kilpatrick, E. Fukada, N. Zhang, S. Habelitz, A. Fertala, M. D. Gilchrist, Y. Zhang, S. A. M. Tofail, B. J. Rodriguez, ACS Biomater Sci. Eng. 2017, 3, 929.

[45]

C. Brinkmann, M. S. Weiss, E. Weckert, Acta Crystallogr. Sect. D Biol. Crystallogr. 2006, 62, 349.

[46]

I. Danielewicz-Ferchmin, E. Banachowicz, A. R. Ferchmin, Phys. Chem. Chem. Phys. 2011, 13, 17722.

[47]

M. G. Ortore, F. Spinozzi, P. Mariani, A. Paciaroni, L. R. S. Barbosa, H. Amenitsch, M. Steinhart, J. Ollivier, D. Russo, J. R. Soc, Interface 2009, 6, S619.

[48]

S. V. Kalinin, B. J. Rodriguez, S. Jesse, K. Seal, R. Proksch, S. Hohlbauch, I. Revenko, G. L. Thompson, A. A. Vertegel, Nanotechnology 2007, 18, 424020.

[49]

A. Stapleton, M. R. Noor, J. Sweeney, V. Casey, A. L. Kholkin, C. Silien, A. A. Gandhi, T. Soulimane, S. A. M. Tofail, Appl. Phys. Lett. 2017, 111, 142902.

[50]

A. Stapleton, M. R. Noor, T. Soulimane, S. A. M. Tofail, in Physiological Role of Piezoelectricity in Biological Building Blocks, 1st ed., Materials for Medical Devices (Eds: S. A. M. Tofail, J. Bauer), Imperial College Press (World Scientific), New Jersey 2016, pp. 237-251.

[51]

A. Stapleton, M. S. Ivanov, M. R. Noor, C. Silien, A. A. Gandhi, T. Soulimane, A. L. Kholkin, S. A. M. Tofail, Ferroelectrics 2018, 525, 135.

[52]

V. E. Bottom, J. Appl. Phys. 1970, 41, 3941.

[53]

Z. Wang, T. Liu, C. Lu, L. Dang, CrystEngComm 2018, 20, 2284.

[54]

N. Kuhar, S. Sil, T. Verma, S. Umapathy, RSC Adv. 2018, 8, 25888.

[55]

Y. Liu, X. Wang, C. B. Ching, Cryst. Growth Des. 2010, 10, 548.

[56]

Z. Borzooeian, M. E. Taslim, O. Ghasemi, S. Rezvani, G. Borzooeian, A. Nourbakhsh, PLoS One 2018, 13, e0197972.

[57]

R. Luo, X. Zhou, Y. Xiu, H. Wang, J. Sol-Gel Sci. Technol. 2018, 87, 584.

[58]

H. Yamada, T. Nagae, N. Watanabe, Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 742.

[59]

S. B. Lang, Nature 1966, 212, 704.

[60]

Z. Yang, S. Zhou, J. Zu, D. Inman, Joule 2018, 2, 642.

[61]

M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, J. Rödel, Appl. Phys. Rev. 2017, 4, 41305.

[62]

E. Prokhorov, G. Luna-Barcenas, J. M. Yanez Limon, J. Munoz Saldana, Mater. Res. Bull. 1661, 2023, 12361.

[63]

A. Rulka, Nanoscale Adv. 2021, 3, 620.

[64]

E. Fukada, Biorheology 1995, 32, 593.

[65]

H.-J. Wang, A. Kleihammes, P. Tang, Y. Xu, Y. Wu, Phys. Rev. E 2011, 83, 31924.

[66]

S. K. Ghosh, P. Adhikary, S. Jana, A. Biswas, V. Sencadas, S. D. Gupta, B. Tudu, D. Mandal, Nano Energy 2017, 36, 166.

[67]

K. Roy, S. K. Ghosh, A. Sultana, S. Garain, M. Xie, C. R. Bowen, K. Henkel, D. Schmeiβer, D. Mandal, ACS Appl. Nano Mater. 2013, 2019, 2.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/